Recipes to Begin, Expand, and Enbance Your Projects

Arduino

O'REILLY" Michael Margolis

9

Electronics/Sensor Networks

Arduino Cookbook

Create your own toys, remote controllers, alarms, detectors, robots,
and many other projects with the Arduino device. This simple
microcontroller board lets artists and designers build a variety of
amazing objects and prototypes that interact with the physical
world. With this cookbook, you can dive right in and experiment
with more than a hundred tips and techniques, no matter what
your skill level is.

The recipes in this book provide solutions for most common
problems and questions Arduino users have, including everything
from programming fundamentals to working with sensors, motors,
lights, and sound, and communicating over wired and wireless
networks. You'll find the examples and advice you need to begin,
expand, and enhance your projects right away.

B Get to know the Arduino development environment

B Understand the core elements of the Arduino programming
language

B Use common output devices for light, motion, and sound
B Interact with almost any device that has a remote control

B Learn techniques for handling time delays and time
measurement

B Transfer digital information from sensors to the Arduino device

m Create complex projects that incorporate shields and
external modules

B Use and modify existing Arduino libraries, and learn how to
create your own

Previous programming experience is recommended.

“Michael Margolis's

comprehensive set of
recipes is a fine gift lo the
burgeoning Arduino
community. Whatever
your background or skill,
the Cookbook provides
solutions for that project
you're wrestling with
loday and fuel for
imagining what you'll
build tomorrow. I doubt
it will ever leave my
workbench table.”

—Mikal Hart
Arduino Uno Advisory Team

Michael Margolis, a technolo-
gist in the field of real-time
computing, has expertise in
developing and delivering
hardware and software for
interacting with the environ-
ment. Formerly the Chief
Technical Officer with Avaya,
he has more than 30 years
of experience with Sony,
Microsoft, and Lucent/Bell Labs.

US $44.99 CAN $51.99
ISBN: 978-0-596-80247-9

T T e

780596"802479

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

Arduino Cookbook

Arduino Cookbook

Michael Margolis

O’REILLY*

Beijing + Cambridge - Farnham - Kéln - Sebastopol « Tokyo

Arduino Cookbook
by Michael Margolis

Copyright © 2011 Michael Margolis and Nicholas Weldin. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian Jepson Indexer: Lucie Haskins
Production Editor: Teresa Elsey Cover Designer: Karen Montgomery
Copyeditor: Audrey Doyle Interior Designer: David Futato
Proofreader: Teresa Elsey lllustrator: Robert Romano
Printing History:

March 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Arduino Cookbook, the image of a toy rabbit, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80247-9
[LSI]
1299267108

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Prefaceo Xiii
1. GettingStartedc.oviniiiiiii i i i i i i 1
1.1 Installing the Integrated Development Environment (IDE) 4
1.2 Setting Up the Arduino Board 6
1.3 Using the Integrated Development Environment (IDE) to Prepare
an Arduino Sketch 8
1.4 Uploading and Running the Blink Sketch 11
1.5 Creating and Saving a Sketch 13
1.6 Using Arduino 15
2. Making the Sketch Do YourBiddingcovviiiiiiiiniiiininnnn.n. 19
2.1 Structuring an Arduino Program 20
2.2 Using Simple Primitive Types (Variables) 21
2.3 Using Floating-Point Numbers 23
2.4 Working with Groups of Values 25
2.5 Using Arduino String Functionality 28
2.6 Using C Character Strings 30
2.7 Splitting Comma-Separated Text into Groups 32
2.8 Converting a Number to a String 34
2.9 Converting a String to a Number 36
2.10 Structuring Your Code into Functional Blocks 38
2.11 Returning More Than One Value from a Function 41
2.12 Taking Actions Based on Conditions 44
2.13 Repeating a Sequence of Statements 45
2.14 Repeating Statements with a Counter 47
2.15 Breaking Out of Loops 49
2.16 Taking a Variety of Actions Based on a Single Variable 50
2.17 Comparing Character and Numeric Values 52
2.18 Comparing Strings 54
2.19 Performing Logical Comparisons 55

2.20
221

3. Using Mathematical Operators

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4. Serial Communications

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5. Simple Digital and Analog Input

5.1
5.2
5.3
5.4

Performing Bitwise Operations
Combining Operations and Assignment

Adding, Subtracting, Multiplying, and Dividing
Incrementing and Decrementing Values

Finding the Remainder After Dividing Two Values
Determining the Absolute Value

Constraining a Number to a Range of Values
Finding the Minimum or Maximum of Some Values
Raising a Number to a Power

Taking the Square Root

Rounding Floating-Point Numbers Up and Down
Using Trigonometric Functions

Generating Random Numbers

Setting and Reading Bits

Shifting Bits

Extracting High and Low Bytes in an int or long
Forming an int or long from High and Low Bytes

Sending Debug Information from Arduino to Your Computer
Sending Formatted Text and Numeric Data from Arduino
Receiving Serial Data in Arduino

Sending Multiple Text Fields from Arduino in a Single Message
Receiving Multiple Text Fields in a Single Message in Arduino
Sending Binary Data from Arduino

Receiving Binary Data from Arduino on a Computer

Sending Binary Values from Processing to Arduino

Sending the Value of Multiple Arduino Pins

How to Move the Mouse Cursor on a PC or Mac

Controlling Google Earth Using Arduino

Logging Arduino Data to a File on Your Computer

Sending Data to Two Serial Devices at the Same Time
Receiving Serial Data from Two Devices at the Same Time
Setting Up Processing on Your Computer to Send

and Receive Serial Data

Using a Switch

Using a Switch Without External Resistors
Reliably Detecting the Closing of a Switch
Determining How Long a Switch Is Pressed

oo

ooo

ooooooooooooooooooooooooooooooooooooooo

56
58

... 61

61
62
63
64
65
66
67
68
68
69
70
72
75
77
78

81
86
89
92
95
98
101
105
107
109
112
115
121
124
128

131

133
136
139
141
144

vi | Table of Contents

5.5
5.6
5.7
5.8
5.9
5.10
5.11

6. Getting Input from Sensors

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

7. Visual Qutput

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8
7.9
7.10
7.11
7.12

Reading a Keypad

Reading Analog Values

Changing the Range of Values

Reading More Than Six Analog Inputs

Displaying Voltages Up to 5V

Responding to Changes in Voltage

Measuring Voltages More Than 5V (Voltage Dividers)

Detecting Movement

Detecting Light

Detecting Motion (Integrating Passive Infrared Detectors)
Measuring Distance

Measuring Distance Accurately

Detecting Vibration

Detecting Sound

Measuring Temperature

Reading RFID Tags

Tracking the Movement of a Dial

Tracking the Movement of More Than One Rotary Encoder
Tracking the Movement of a Dial in a Busy Sketch

Using a Mouse

Getting Location from a GPS

Detecting Rotation Using a Gyroscope

Detecting Direction

Getting Input from a Game Control Pad (PlayStation)
Reading Acceleration

Connecting and Using LEDs

Adjusting the Brightness of an LED

Driving High-Power LEDs

Adjusting the Color of an LED

Sequencing Multiple LEDs: Creating a Bar Graph

Sequencing Multiple LEDs: Making a Chase Sequence (Knight

Rider)

Controlling an LED Matrix Using Multiplexing
Displaying Images on an LED Matrix

Controlling a Matrix of LEDs: Charlieplexing

Driving a 7-Segment LED Display

Driving Multidigit, 7-Segment LED Displays: Multiplexing

Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift

Registers

oo

ooo

149
152
154
155
158
161
162

165
167
170
171
173
176
180
181
185
187
190
193
195
197
201
206
208
211
213

217
220
223
224
226
229

232
234
236
239
245
248

250

Table of Contents | vii

7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers

7.14 Increasing the Number of Analog Outputs Using PWM Extender
Chips (TLC5940)

7.15 Using an Analog Panel Meter As a Display

8. Physical QULPULoeuiii ittt ittt i i it
8.1 Controlling the Position of a Servo
8.2 Controlling One or Two Servos with a Potentiometer
or Sensor
8.3 Controlling the Speed of Continuous Rotation Servos
8.4 Controlling Servos from the Serial Port
8.5 Driving a Brushless Motor (Using a Hobby Speed Controller)
8.6 Controlling Solenoids and Relays
8.7 Making an Object Vibrate
8.8 Driving a Brushed Motor Using a Transistor
8.9 Controlling the Direction of a Brushed Motor
with an H-Bridge
8.10 Controlling the Direction and Speed of a Brushed Motor with an
H-Bridge
8.11 Using Sensors to Control the Direction and Speed of Brushed
Motors (L293 H-Bridge)
8.12 Driving a Bipolar Stepper Motor
8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board)
8.14 Driving a Unipolar Stepper Motor (ULN2003A)

9. AudioOUEPUE ... eeetiii i i i i et
9.1 Playing Tones
9.2 Playing a Simple Melody
9.3 Generating More Than One Simultaneous Tone
9.4 Generating Audio Tones and Fading an LED
9.5 Playing a WAV File
9.6 Controlling MIDI
9.7 Making an Audio Synthesizer

10. Remotely Controlling External Devicesccovvvviiiiniiniiniinnnnns
10.1 Responding to an Infrared Remote Control
10.2 Decoding Infrared Remote Control Signals
10.3 Imitating Remote Control Signals
10.4 Controlling a Digital Camera
10.5 Controlling AC Devices by Hacking a Remote Controlled Switch

11, Using Displaysovuiiniiniiiiiiiiiii i iiiii it eiieienaennss
11.1 Connecting and Using a Text LCD Display

253

255
259

261
264

266
267
269
271
272
273
276

277

280

282
287
290
293

297
299
301
303
305
308
311
314

317
318
321
324
327
330

333
334

viii | Table of Contents

12.

13.

14. Wireless Communication

15. Ethernet and Networking

11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11

Using Time and Dates

12.1
12.2
12.3
12.4
12.5
12.6

Communicating Using 12C and SPI

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

14.1
14.2
14.3
14.4
14.5

15.1
15.2
15.3
15.4
15.5

Formatting Text

Turning the Cursor and Display On or Off
Scrolling Text

Displaying Special Symbols

Creating Custom Characters

Displaying Symbols Larger Than a Single Character
Displaying Pixels Smaller Than a Single Character
Connecting and Using a Graphical LCD Display
Creating Bitmaps for Use with a Graphical Display
Displaying Text on a TV

Creating Delays

Using millis to Determine Duration

More Precisely Measuring the Duration of a Pulse
Using Arduino As a Clock

Creating an Alarm to Periodically Call a Function
Using a Real-Time Clock

Controlling an RGB LED Using the BlinkM Module
Using the Wii Nunchuck Accelerometer

Interfacing to an External Real-Time Clock

Adding External EEPROM Memory

Reading Temperature with a Digital Thermometer
Driving Four 7-Segment LEDs Using Only Two Wires
Integrating an 12C Port Expander

Driving Multidigit, 7-Segment Displays Using SPI
Communicating Between Two or More Arduino Boards

Sending Messages Using Low-Cost Wireless Modules
Connecting Arduino to a ZigBee or 802.15.4 Network
Sending a Message to a Particular XBee

Sending Sensor Data Between XBees

Activating an Actuator Connected to an XBee

Setting Up the Ethernet Shield

Obtaining Your IP Address Automatically
Resolving Hostnames to IP Addresses (DNS)
Requesting Data from a Web Server

Requesting Data from a Web Server Using XML

ooo

oooooooooooooooooooooooooooooooooo

oo

ooo

337
340
342
345
347
349
352
355
359
361

367
367
368
372
373
380
384

389
392
397
401
404
408
412
416
418
421

425
425
431
438
440
446

451
453
455
458
462
466

Table of Contents | ix

15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16

16. Using, Modifying, and Creating Libraries

16.1
16.2
16.3
16.4
16.5

17. Advanced Coding and Memory Handling

17.1
17.2
17.3
17.4
17.5
17.6

18. Using the Controller Chip Hardware

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11

A. Electronic Components

B. Using Schematic Diagrams and Data Sheets

Setting Up an Arduino to Be a Web Server
Handling Incoming Web Requests

Handling Incoming Requests for Specific Pages
Using HTML to Format Web Server Responses
Serving Web Pages Using Forms (POST)
Serving Web Pages Containing Large Amounts of Data
Sending Twitter Messages

Sending and Receiving Simple Messages (UDP)
Getting the Time from an Internet Time Server
Monitoring Pachube Feeds

Sending Information to Pachube

Using the Built-in Libraries

Installing Third-Party Libraries

Modifying a Library

Creating Your Own Library

Creating a Library That Uses Other Libraries

Understanding the Arduino Build Process

Determining the Amount of Free and Used RAM

Storing and Retrieving Numeric Values in Program Memory
Storing and Retrieving Strings in Program Memory

Using #define and const Instead of Integers

Using Conditional Compilations

Storing Data in Permanent EEPROM Memory
Using Hardware Interrupts

Setting Timer Duration

Setting Timer Pulse Width and Duration
Creating a Pulse Generator

Changing a Timer’s PWM Frequency
Counting Pulses

Measuring Pulses More Accurately
Measuring Analog Values Quickly
Reducing Battery Drain

Setting Digital Pins Quickly

oooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooo

ooo

oooooooooooooooooooooooooooo

469
471
474
479
483
486
493
496
502
507
510

515
515
517
518
522
527

531
532
535
537
540
542
543

547
551
554
557
559
562
565
567
569
571
572
574

X | Table of Contents

Building and Connecting the Gircuitcooviuiiiiiiiiiiiiiiiininn 591
Tips on Troubleshooting Software Problemsc.ccoiiiiiiat, 595
Tips on Troubleshooting Hardware Problemsccovvvenat. 599
Digitaland AnalogPinsccoviiiiiiiiii it i 603
ASCll and Extended CharacterSetscovviviiiiiiiiiiiniiinenns. 607
... 611

Table of Contents | xi

Preface

This book was written by Michael Margolis with Nick Weldin to help you explore the
amazing things you can do with Arduino.

Arduino is a family of microcontrollers (tiny computers) and a software creation envi-
ronment that makes it easy for you to create programs (called sketches) that can interact
with the physical world. Things you make with Arduino can sense and respond to
touch, sound, position, heat, and light. This type of technology, often referred to as
physical computing, is used in all kinds of things, from the iPhone to automobile elec-
tronics systems. Arduino makes it possible for anyone—even people with no program-
ming or electronics experience—to use this rich and complex technology.

Who This Book Is For

Unlike in most technical cookbooks, experience with software and hardware is not
assumed. This book is aimed at a broad range of readers interested in using computer
technology to interact with the environment. It is for people who want to quickly find
the solution to hardware and software problems.

You may have no programming experience—perhaps you have a great idea for an in-
teractive project but don’t have the skills to develop it. This book will help you learn
what you need to know to write code that works, using examples that cover the kinds
of tasks you want to perform.

If you have some programming experience but are new to Arduino, the book will help
you become productive quickly by demonstrating how to implement specific Arduino
capabilities for your project.

People already using Arduino should find the content helpful for quickly learning new
techniques, which are explained using practical examples. This will help you to embark
on more complex projects by showing how to solve problems and use capabilities that
may be new to you.

Experienced C/C++ programmers will find examples of how to use the low-level AVR
resources (interrupts, timers, 12C, Ethernet, etc.) to build applications using the
Arduino environment.

Xiii

How This Book Is Organized

The book contains information that covers the broad range of the Arduino’s capabili-
ties, from basic concepts and common tasks to advanced technology. Each technique
is explained in a recipe that shows you how to implement a specific capability. You do
not need to read the content in sequence.

Chapter 1, Getting Started, introduces the Arduino environment and provides help on
getting the Arduino development environment and hardware installed and working.

The next couple of chapters introduce Arduino software development. Chapter 2,
Making the Sketch Do Your Bidding, covers essential software concepts and tasks, and
Chapter 3, Using Mathematical Operators, shows how to make use of the most common
mathematical functions.

Chapter 4, Serial Communications, describes how to get Arduino to connect and com-
municate with your computer and other devices. Serial is the most common method
for Arduino input and output, and this capability is used in many of the recipes
throughout the book.

Chapter 5, Simple Digital and Analog Input, introduces a range of basic techniques for
reading digital and analog signals. Chapter 6, Getting Input from Sensors, builds on this
with recipes that explain how to use devices that enable Arduino to sense touch, sound,
position, heat, and light.

Chapter 7, Visual Output, covers controlling light. Recipes cover switching on one or
many LEDs and controlling brightness and color. This chapter explains how you can
drive bar graphs and numeric LED displays, as well as create patterns and animations
with LED arrays. In addition, the chapter provides a general introduction to digital and
analog output for those who are new to this.

Chapter 8, Physical Output, explains how you can make things move by controlling
motors with Arduino. A wide range of motor types are covered: solenoids, servo motors,
DC motors, and stepper motors.

Chapter 9, Audio Output, shows how to generate sound with Arduino through an out-
put device such as a speaker. It covers playing simple tones and melodies and playing
WAV files and MIDI.

Chapter 10, Remotely Controlling External Devices, describes techniques that can be
used to interact with almost any device that uses some form of remote controller, in-
cluding TV, audio equipment, cameras, garage doors, appliances, and toys. It builds
on techniques used in previous chapters for connecting Arduino to devices and
modules.

Chapter 11, Using Displays, covers interfacing text and graphical LCD displays. The
chapter shows how you can connect these devices to display text, scroll or highlight
words, and create special symbols and characters.

xiv | Preface

Chapter 12, Using Time and Dates, covers built-in Arduino time-related functions and
introduces many additional techniques for handling time delays, time measurement,
and real-world times and dates.

Chapter 13, Communicating Using I12C and SPI, covers the Inter-Integrated Circuit
(I2C) and Serial Peripheral Interface (SPI) standards. These standards provide simple
ways for digital information to be transferred between sensors and Arduino. This chap-
ter shows how to use I2C and SPI to connect to common devices. It also shows how to
connect two or more Arduino boards, using 12C for multiboard applications.

Chapter 14, Wireless Communication, covers wireless communication with XBee. This
chapter provides examples ranging from simple wireless serial port replacements to
mesh networks connecting multiple boards to multiple sensors.

Chapter 15, Ethernet and Networking, describes the many ways you can use Arduino
with the Internet. It has examples that demonstrate how to build and use web clients
and servers and shows how to use the most common Internet communication protocols
with Arduino.

Arduino software libraries are a standard way of adding functionality to the Arduino
environment. Chapter 16, Using, Modifying, and Creating Libraries, explains how to
use and modify software libraries. It also provides guidance on how to create your own
libraries.

Chapter 17, Advanced Coding and Memory Handling, covers advanced programming
techniques, and the topics here are more technical than the other recipes in this book
because they cover things that are usually concealed by the friendly Arduino wrapper.
The techniques in this chapter can be used to make a sketch more efficient—they can
help improve performance and reduce the code size of your sketches.

Chapter 18, Using the Controller Chip Hardware, shows how to access and use hard-
ware functions that are not fully exposed through the documented Arduino language.
It covers low-level usage of the hardware input/output registers, timers, and interrupts.

Appendix A, Electronic Components, provides an overview of the components used
throughout the book.

Appendix B, Using Schematic Diagrams and Data Sheets, explains how to use schematic
diagrams and data sheets.

Appendix C, Building and Connecting the Circuit, provides a brief introduction to using
a breadboard, connecting and using external power supplies and batteries, and using
capacitors for decoupling.

Appendix D, Tips on Troubleshooting Software Problems, provides tips on fixing com-
pile and runtime problems.

Appendix E, Tips on Troubleshooting Hardware Problems, covers problems with elec-
tronic circuits.

Preface | xv

Appendix F, Digital and Analog Pins, provides tables indicating functionality provided
by the pins on standard Arduino boards.

Appendix G, ASCII and Extended Character Sets, provides tables showing ASCII
characters.

What Was Left Qut

There isn’t room in this book to cover electronics theory and practice, although guid-
ance is provided for building the circuits used in the recipes. For more detail, readers
may want to refer to material that is widely available on the Internet or to books such
as the following:

* Make: Electronics by Charles Platt (O’Reilly)

* Getting Started in Electronics by Forrest Mims (Master Publishing)

* Physical Computing by Tom Igoe (Cengage)

* Practical Electronics for Inventors by Paul Scherz (McGraw-Hill)
This cookbook explains how to write code to accomplish specific tasks, but it is not an
introduction to programming. Relevant programming concepts are briefly explained,
but there is insufficient room to cover the details. If you want to learn more about
programming, you may want to refer to the Internet or to one of the following books:

* Practical C Programming by Steve Oualline (O’Reilly)

* A Book on C by Al Kelley and Ira Pohl (Addison-Wesley)
My favorite, although not really a beginner’s book, is the book I used to learn
C programming;:

* The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie
(Prentice Hall)

Code Style (About the Code)

The code used throughout this book has been tailored to clearly illustrate the topic
covered in each recipe. As a consequence, some common coding shortcuts have been
avoided, particularly in the early chapters. Experienced C programmers often use rich
but terse expressions that are efficient but can be a little difficult for beginners to read.
For example, the early chapters increment variables using explicit expressions that are
easy for nonprogrammers to read:

result = result + 1; // increment the count
Rather than the following, commonly used by experienced programmers, that does the
same thing:

result++; // increment using the post increment operator

xvi | Preface

http://oreilly.com/catalog/9780596153755/
http://oreilly.com/catalog/9781565923065/

Feel free to substitute your preferred style. Beginners should be reassured that there is
no benefit in performance or code size in using the terse form.

Some programming expressions are so common that they are used in their terse form.
For example, the loop expressions are written as follows:

for(int i=0; i < 4; i++)
This is equivalent to the following:

int i;
for(i=0; i < 4; i = i+1)

See Chapter 2 for more details on these and other expressions used throughout the
book.

Good programming practice involves ensuring that values used are valid (garbage in
equals garbage out) by checking them before using them in calculations. However, to
keep the code focused on the recipe topic, very little error-checking code has been
included.

Arduino Platform Release Notes

The code has been tested using Arduino releases from version 0018 through version
0020. This book was written before Arduino v1.0 was finalized, and although almost
all of the examples should still work, small changes required for running with v1.0 will
be published on the site for the book:

http://www.oreilly.com/catalog/9780596802479/

There’s also a link to errata there. Errata give readers a way to let us know about typos,
errors, and other problems with the book. Errata will be visible on the page immedi-
ately, and we’ll confirm them after checking them out. O’Reilly can also fix errata in
future printings of the book and on Safari, making for a better reader experience pretty
quickly.

If you have problems making examples work, check the web link to see if the code has
been updated. If that doesn’t fix the problem, see Appendix D, which covers trouble-
shooting software problems. The Arduino forum is a good place to post a question if
you need more help: http://www.arduino.cc.

We hope to keep this book updated for future Arduino versions, and we will also
incorporate suggestions and complaints into future editions.

If you like—or don’t like—this book, by all means, please let people know. Amazon
reviews are one popular way to share your happiness (or lack of happiness), or you can
leave reviews at the site for the book.

Preface | xvii

http://www.oreilly.com/catalog/9780596802479/
http://www.arduino.cc

Conventions Used in This Book

The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; Internet addresses, such as
domain names and URLs; and new items where they are defined

Constant width
Indicates command lines and options that should be typed verbatim; names and
keywords in programs, including method names, variable names, and class names;
and HTML element tags

Constant width bold
Indicates emphasis in program code lines
Constant width italic
Indicates text that should be replaced with user-supplied values

B A
\
" \‘
as
[N
SN

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

=

Using Code Examples

This book is here to help you make things with Arduino. In general, you may use the
code in this book in your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Arduino Cookbook by Michael Margolis
with Nick Weldin (O’Reilly). Copyright 2011 Michael Margolis and Nicholas Weldin,
9780596802479.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

xviii | Preface

mailto:permissions@oreilly.com

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

Safari

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made a few mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international/local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596802479
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://'www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xix

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596802479
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

Nick Weldin’s contribution was invaluable for the completion of this book. It was
90 percent written when Nick came on board—and without his skill and enthusiasm,
it would still be 90 percent written. His hands-on experience running Arduino work-
shops for all levels of users enabled us to make the advice in this book practical for our
broad range of readers. Thank you, Nick, for your knowledge and genial collaborative
nature.

Simon St. Laurent was the editor at O’Reilly who first expressed interest in this book.
And in the end, he is the man who pulled it together. His support and encouragement
kept us inspired as we sifted our way through the volumes of material necessary to do
the subject justice.

Brian Jepson helped me get started with the writing of this book. His vast knowledge
of things Arduino and his concern and expertise for communicating about technology
in plain English set a high standard. He was an ideal guiding hand for shaping the book
and making technology readily accessible for readers. We also have Brian to thank for
the XBee content in Chapter 14.

Audrey Doyle worked tirelessly to stamp out typos and grammatical errors in the
manuscript and untangle some of the more convoluted expressions.

Philip Lindsay collaborated on Chapter 15, and his combination of deep technical
knowledge and clear understanding of the needs of nontechnical people was essential
in making the complex subject of Ethernet accessible.

Mikal Hart wrote recipes covering GPS and software serial. Mikal was the natural
choice for this—not only because he wrote the libraries, but also because he is a fluent
communicator, an Arduino enthusiast, and a pleasure to collaborate with.

Arduino is possible because of the creativity of the core Arduino development team:
Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis. On
behalf of all Arduino users, I wish to express our appreciation for their efforts in making
this fascinating technology simple and their generosity in making it free.

Special thanks to Alexandra Deschamps-Sonsino, CEO of Tinker London, whose
workshops provided important understanding of the needs of users. Thanks also to
Peter Knight, who has provided all kinds of clever Arduino solutions as well as the basis
of a number of recipes in this book.

On behalf of everyone who has downloaded user-contributed Arduino libraries, I
would like to thank the authors who have generously shared their knowledge.

The availability of a wide range of hardware is a large part of what makes Arduino
exciting—thanks to the suppliers for stocking and supporting a broad range of great
devices. The following were helpful in providing hardware used in the book: SparkFun,
Maker Store, Gravitech, and NKC Electronics. Other suppliers that have been helpful

xx | Preface

include Modern Device, Liquidware, Adafruit, Makerbot Industries, Mindkits,
Oomlout, and SK Pang.

Nick would like to thank Alexandra and Peter at Tinker London, as well as Brock Craft,
and especially Daniel Soltis for all the workshops we have done together.

Nick would also like to thank everyone who has assisted at workshops, and participants
who asked a “silly” question, as there are no silly questions. Many of those have led to
clarifications and corrections in this book.

Nick’s final thanks go to his family, Jeanie, Emily, and Finn, who agreed to let him do
this over their summer holiday, and of course, much longer after that than they origi-
nally thought, and to his parents, Frank and Eva, for bringing him up to take things
apart.

Last but not least, I express thanks to the following people:

Joshua Noble for introducing me to O’Reilly. His book, Programming Interactivity, is
highly recommended for those interested in broadening their knowledge in interactive
computing.

Robert Lacy-Thompson for offering advice early on with the book.

Mark Margolis for his support and help as a sounding board in the book’s conception
and development.

[thank my parents for helping me to see that the creative arts and technology were not
distinctive entities and that, when combined, they can lead to extraordinary results.

And finally, this book would not have been started or finished without the support of
my wife, Barbara Faden. My grateful appreciation to her for keeping me motivated and
for her careful reading and contributions to the manuscript.

Preface | xxi

http://oreilly.com/catalog/9780596154158/

CHAPTER1
Getting Started

1.0 Introduction

The Arduino environment has been designed to be easy to use for beginners who have
no software or electronics experience. With Arduino, you can build objects that can
respond to and/or control light, sound, touch, and movement. Arduino has been used
to create an amazing variety of things, including musical instruments, robots, light
sculptures, games, interactive furniture, and even interactive clothing.

If you’re not a beginner, please feel free to skip ahead to recipes that
interest you.

Arduino is used in many educational programs around the world, particularly by de-
signers and artists who want to easily create prototypes but do not need a deep under-
standing of the technical details behind their creations. Because it is designed to be used
by nontechnical people, the software includes plenty of example code to demonstrate
how to use the Arduino board’s various facilities.

Though it is easy to use, Arduino’s underlying hardware works at the same level of
sophistication that engineers employ to build embedded devices. People already work-
ing with microcontrollers are also attracted to Arduino because of its agile development
capabilities and its facility for quick implementation of ideas.

Arduino is best known for its hardware, but you also need software to program that
hardware. Both the hardware and the software are called “Arduino.” The combination
enables you to create projects that sense and control the physical world. The software
is free, open source, and cross-platform. The boards are inexpensive to buy, or you can
build your own (the hardware designs are also open source). In addition, there is an
active and supportive Arduino community that is accessible worldwide through the
Arduino forums and the wiki (known as the Arduino Playground). The forums and the

wiki offer project development examples and solutions to problems that can provide
inspiration and assistance as you pursue your own projects.

The recipes in this chapter will get you started by explaining how to set up the devel-
opment environment and how to compile and run an example sketch.

W
o Source code containing computer instructions for controlling Arduino
"‘) functionality is usually referred to as a sketch in the Arduino community.
T WUay The word sketch will be used throughout this book to refer to Arduino

program code.

The Blink sketch, which comes with Arduino, is used as an example for recipes in this
chapter, though the last recipe in the chapter goes further by adding sound and col-
lecting input through some additional hardware, not just blinking the light built into
the board. Chapter 2 covers how to structure a sketch for Arduino and provides an
introduction to programming.

W
- If you already know your way around Arduino basics, feel free to jump
"‘:‘ forward to later chapters. If you're a first-time Arduino user, patience
T+ Qi8¢ in these early recipes will pay off with smoother results later.
Arduino Software

Software programs, called sketches, are created on a computer using the Arduino inte-
grated development environment (IDE). The IDE enables you to write and edit code
and convert this code into instructions that Arduino hardware understands. The IDE
also transfers those instructions to the Arduino board (a process called uploading).

Arduino Hardware

The Arduino board is where the code you write is executed. The board can only control
and respond to electricity, so specific components are attached to it to enable it to
interact with the real world. These components can be sensors, which convert some
aspect of the physical world to electricity so that the board can sense it, or actuators,
which get electricity from the board and convert it into something that changes the
world. Examples of sensors include switches, accelerometers, and ultrasound distance
sensors. Actuators are things like lights and LEDs, speakers, motors, and displays.

There are a variety of official boards that you can use with Arduino software and a wide
range of Arduino-compatible boards produced by members of the community.

The most popular boards contain a USB connector that is used to provide power and
connectivity for uploading your software onto the board. Figure 1-1 shows a basic
board, the Arduino Uno.

2 | Chapter1: Getting Started

MADE)

IN ITALY 888 s 1OM® NOIMTMANAS
w 1 [1 A
T DIGITAL (PWM~) & &

LOTXWEM K
5 e 0 RANER ARDUINO
‘, (sPK\mmbv) wn
LE g] Dm0 oD 6D

Figure 1-1. Basic board: the Arduino Uno

You can get boards as small as a postage stamp, such as the Arduino Mini and Pro Mini;
larger boards that have more connection options and more powerful processors, such
as the Arduino Mega; and boards tailored for specific applications, such as the LilyPad
for wearable applications, the Fio for wireless projects, and the Arduino Pro for em-
bedded applications (standalone projects that are often battery-operated). Many other
Arduino-compatible boards are also available, including the following:

* Arduino Nano, a tiny board with USB capability, from Gravitech (http://store.grav
itech.us/arna30wiatn.html)

* Bare Bones Board, a low-cost board available with or without USB capability, from
Modern Device (http://www.moderndevice.com/products/bbb-kit)

* Boarduino, a low-cost breadboard-compatible board, from Adafruit Industries
(http://www.adafruit.com/)

¢ Seeeduino, a flexible variation of the standard USB board, from Seeed Studio
Bazaar (http://www.seeedstudio.com/)

* Teensy and Teensy++, tiny but extremely versatile boards, from PJRC (http://www
.pjrc.com/teensy/)

A comprehensive list of Arduino-compatible boards is available at http://www.freeduino
.org/.

See Also
An overview of Arduino boards: hitp://www.arduino.cc/en/Main/Hardware.

Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

1.0 Introduction | 3

http://store.gravitech.us/arna30wiatn.html
http://store.gravitech.us/arna30wiatn.html
http://www.moderndevice.com/products/bbb-kit
http://www.adafruit.com/
http://www.seeedstudio.com/
http://www.pjrc.com/teensy/
http://www.pjrc.com/teensy/
http://www.freeduino.org/
http://www.freeduino.org/
http://www.arduino.cc/en/Main/Hardware
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux

1.1 Installing the Integrated Development Environment (IDE)

Problem

You want to install the Arduino development environment on your computer.

Solution

The Arduino software for Windows, Mac, and Linux can be downloaded from http:/
arduino.cc/en/Main/Software.

The Windows download is a ZIP file. Unzip the file to any convenient directory—
Program Files/Arduino is a sensible place.

N

A free utility for unzipping files, called 7-Zip, can be downloaded from
http://www.7-zip.org/.

Unzipping the file will create a folder named Arduino-00<nn> (where <nn> is the ver-
sion number of the Arduino release you downloaded). The directory contains the
executable file (named Arduino.exe), along with various other files and folders. Double-
click the Arduino.exe file and the splash screen should appear (see Figure 1-2), followed
by the main program window (see Figure 1-3). Be patient, as it can take some time for
the software to load.

Name Type Organize « Open Burn MNew folder
. arduino-0019 File folder % Favorites i Marne :
Bl Desktop drivers
4 Downloads . examples
| Recent Places . hardware

E! arduino.exe

Brduino

as and Ben Fry

Figure 1-2. Arduino splash screen (version 0019 in Windows 7)

4 | Chapter1: Getting Started

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://www.7-zip.org/

i ™y
| sketch_sep08a | Arduino 0019 E=REERTS

File Edit Sketch Tools Help

. m— e—

Figure 1-3. Arduino IDE main window (version 0019 in Windows 7)

The Arduino download for the Mac is a disk image (.dmg); double-click the file when
the download is complete. The image will mount (it will appear like a memory stick
on the desktop). Inside the disk image is the Arduino application. Copy this to some-
where convenient—the Applications folder is a sensible place. Double-click the appli-
cation once you have copied it over (it is not a good idea to run it from the disk image).
The splash screen will appear, followed by the main program window.

Linux installation varies depending on the Linux distribution you are using. See the
Arduino wiki for information (http://www.arduino.cc/playground/Learning/Linux).

To enable the Arduino development environment to communicate with the board, you
need to install drivers.

1.1 Installing the Integrated Development Environment (IDE) | 5

http://www.arduino.cc/playground/Learning/Linux

On Windows, use the USB cable to connect your PC and the Arduino board and wait
for the Found New Hardware Wizard to appear. If you are using Windows Vista or
Windows 7 and are online, you can let the wizard search for drivers and they will install
automatically. On Windows XP, you should specify the location of the drivers. Use the
file selector to navigate to the drivers directory, located in the directory where you
unzipped the Arduino files. When the driver has installed, the Found New Hardware
Wizard will appear again, saying a new serial port has been found. Follow the same
process as before.

W

S It is important that you go through the sequence of steps to install the
"‘:\ drivers two times, or the software will not be able to communicate with
TN s the board.

On the Mac, the latest Arduino boards, such as the Uno, can be used without additional
drivers, but if you are using earlier boards, you will need to install driver software. There
is a package named FTDIUSBSerialDriver, with a range of numbers after it, inside the
disk image. Double-click this and the installer will take you through the process. You
will need to know an administrator password to complete the process.

On Linux, most distributions have the driver already installed, but follow the Linux
link given in this chapter’s introduction for specific information for your distribution.

Discussion

If the software fails to start, check the troubleshooting section of the Arduino website,
http://arduino.cc/en/Guide/Troubleshooting, for help solving installation problems.

See Also

Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

1.2 Setting Up the Arduino Board

Problem

You want to power up a new board and verify that it is working.

Solution

Plug the board into a USB port on your computer and check that the green LED power
indicator on the board illuminates. Standard Arduino boards (Uno, Duemilanove, and
Mega) have a green LED power indicator located near the reset switch.

6 | Chapter1: Getting Started

http://arduino.cc/en/Guide/Troubleshooting
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux

An orange LED near the center of the board (labeled “Pin 13 LED” in Figure 1-4) should
flash on and off when the board is powered up (boards come from the factory preloaded
with software to flash the LED as a simple check that the board is working).

Pin13

LED
EOOOOM00 - 00000
=S 77 =z

DIGITAL

UsB O .
Connector o A rd u | n o
/ [B——PowerLED
oo
Serial @\:
Reset

LEDs

External DC - N Bo_wwe ANALG
Power connector { [] EmTRGESEE o ~m=n
U goooog

Figure 1-4. Basic Arduino board (Uno and Duemilanove)

Discussion

If the power LED does not illuminate when the board is connected to your computer,
the board is probably not receiving power.

The flashing LED (connected to digital output pin 13) is being controlled by code
running on the board (new boards are preloaded with the Blink example sketch). If the
pin 13 LED is flashing, the sketch is running correctly, which means the chip on the
board is working. If the green power LED is on but the pin 13 LED is not flashing, it
could be that the factory code is not on the chip; follow the instructions in Rec-
ipe 1.3 to load the Blink sketch onto the board to verify that the board is working. If
you are not using a standard board, it may not have a built-in LED on pin 13, so check
the documentation for details of your board.

See Also

Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

A troubleshooting guide can be found at http://arduino.cc/en/Guide/Troubleshooting.

1.2 Setting Up the Arduino Board | 7

http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux
http://arduino.cc/en/Guide/Troubleshooting

1.3 Using the Integrated Development Environment (IDE) to
Prepare an Arduino Sketch

Problem

You want to get a sketch and prepare it for uploading to the board.

Solution

Use the Arduino IDE to create, open, and modify sketches that define what the board
will do. You can use buttons along the top of the IDE to perform these actions (shown
in Figure 1-5), or you can use the menus or keyboard shortcuts (shown in Figure 1-6).

The Sketch Editor area is where you view and edit code for a sketch. It supports com-
mon text editing keys such as Ctrl-F (8+F on a Mac) for find, Ctrl-Z (8+Z on a Mac)
for undo, Ctrl-C (88+C on a Mac) to copy highlighted text, and Ctrl-V (%+V on a Mac)
to paste highlighted text.

Figure 1-6 shows how to load the Blink sketch (the sketch that comes preloaded on a
new Arduino board).

After you’ve started the IDE, go to the File»Examples menu and select 1.Basics—Blink,
as shown in Figure 1-6. The code for blinking the built-in LED will be displayed in the
Sketch Editor window (refer to Figure 1-5).

Before the code can be sent to the board, it needs to be converted into instructions that
can be read and executed by the Arduino controller chip; this is called compiling. To
do this, click the compile button (the top-left button with a triangle inside), or select
Sketch—Verify/Compile.

You should see a message that reads “Compiling...” in the message area below the text
editing window. After a second or two, a message that reads “Done Compiling” will
appear. The black console area will contain the following additional message:

Binary sketch size: 1008 bytes (of a 32256 byte maximum)

The exact message may differ depending on the Arduino version; it is telling you the
size of the sketch and the maximum size that your board can accept.

8 | Chapter1: Getting Started

Create New Sketch

Open Existing Sketch
Save Sketch
ipload to Board
Compile Serial Monitor
(n sketch_se;{ﬂ&a Ard{iino D019 [E=REE™)
File Edit Sketch [Toolf Help

Sketch
Editor

Text Console —
(Status and
Error Messages)

Figure 1-5. Arduino IDE

Discussion

Source code for Arduino is called a sketch. The process that takes a sketch and converts
itinto a form that will work on the board is called compilation. The IDE uses a number
of command-line tools behind the scenes to compile a sketch. For more information
on this, see Recipe 17.1.

1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch | 9

| £ sketch_sep08a | Arduinc 0019
Edit Sketch Tools Help
New Ctrl+M
Open... Ctrl+ O
Sketchbook 4
Examples » 1.Basics 4 AnalogReadSerial
Close Ctrl+W 2.Digital 3 BareMinimum
Save Ctrl+S 3.Analog 4 Blink
Save As... Ctrl+Shift+5 4.Communication » DigitalReadSerial
Uplead to I/O Board Ctrl+U 5.Control » Fade
Page Setup Ctrl+ Shift+P G'Sénsms ’
Print Ctrl+P 7 Diepley '
8.5trings 3
Preferences Ctrl+ Comma ArduinolSP
Quit Ctrl+Q EEPROM 3
Ethernet 4
Firmata L
LiquidCrystal k
Matrix 3
Servo 3 X
4 I
SPI
Stepper
Wire
e ———————————————————

Figure 1-6. IDE menu (selecting the Blink example sketch)

The final message telling you the size of the sketch indicates how much program space
is needed to store the controller instructions on the board. If the size of the compiled
sketch is greater than the available memory on the board, the following error message
is displayed:
Sketch too big; see http://www.arduino.cc/en/Guide/Troubleshooting#size
for tips on reducing it.

If this happens, you need to make your sketch smaller to be able to put it on the board,
or get a board with higher capacity.

10 | Chapter1: Getting Started

If there are errors in the code, the compiler will print one or more error messages in the
console window. These messages can help identify the erro—see Appendix D on soft-
ware errors for troubleshooting tips.

W

To prevent accidental overwriting of the examples, the Arduino IDE
does not allow you to save changes to the provided example sketches.
%5 You must rename them using the Save As menu option. You can save
" sketches you write yourself with the Save button (see Recipe 1.5).

As you develop and modify a sketch, you should also consider using the File-Save As
menu option and using a different name or version number regularly so that as you
implement each bit, you can go back to an older version if you need to.

W
A

Code uploaded onto the board cannot be downloaded back onto your
computer. Make sure you save your sketch code on your computer. You
%ls cannot save changes back to the example files; you need to use Save As
" and give the changed file another name.

See Also

Recipe 1.5 shows an example sketch. Appendix D has tips on troubleshooting software
problems.

1.4 Uploading and Running the Blink Sketch

Problem

You want to transfer your compiled sketch to the Arduino board and see it working.

Solution

Connect your Arduino board to your computer using the USB cable. Load the Blink
sketch into the IDE as described in Recipe 1.3.

Next, select Tools—Board from the drop-down menu and select the name of the board
you have connected (if it is the standard Uno board, it is probably the first entry in the
board list).

Now select Tools—Serial Port. You will get a drop-down list of available serial ports on
your computer. Each machine will have a different combination of serial ports, de-
pending on what other devices you have used with your computer.

On Windows, they will be listed as numbered COM entries. If there is only one entry,
select it. If there are multiple entries, your board will probably be the last entry.

1.4 Uploading and Running the Blink Sketch | 11

On the Mac, your board will be listed twice if it is an Uno board:

/dev/tty.usbmodem-XXXXXXX
/dev/cu.usbmodem-XXXXXXX

If you have an older board, it will be listed as follows:

/dev/tty.usbserial-XXXXXXX
/dev/cu.usbserial-XXXXXXX

Each board will have different values for XXXXXXX. Select either entry.

Click on the upload button (in Figure 1-5, it’s the fifth button from the left), or choose
File»Upload to I/O board.

The software will compile the code, as in Recipe 1.3. After the software is compiled, it
is uploaded to the board. If you look at your board, you will see the LED stop flashing,
and two lights (labeled as Serial LEDs in Figure 1-4) just below the previously flashing
LED should flicker for a couple of seconds as the code uploads. The original light should
then start flashing again as the code runs.

Discussion

For the IDE to send the compiled code to the board, the board needs to be plugged
into the computer, and you need to tell the IDE which board and serial port you are
using.

When an upload starts, whatever sketch is running on the board is stopped (if you were
running the Blink sketch, the LED will stop flashing). The new sketch is uploaded to
the board, replacing the previous sketch. The new sketch will start running when the
upload has successfully completed.

W
o Older Arduino boards and some compatibles do not automatically in-
.“:‘ terrupt the running sketch to initiate upload. In this case, you need to
T Q8 press the Reset button on the board just after the software reports that
" it is done compiling (when you see the message about the size of the
sketch). It may take a few attempts to get the timing right between the
end of the compilation and pressing the Reset button.

The IDE will display an error message if the upload is not successful. Problems are
usually due to the wrong board or serial port being selected or the board not being
plugged in.

If you have trouble identifying the correct port on Windows, try unplugging the board
and then selecting Tools—Serial Port to see which COM port is no longer on the display
list. Another approach is to select the ports, one by one, until you see the lights on the
board flicker to indicate that the code is uploading.

12 | Chapter1: Getting Started

See Also
The Arduino troubleshooting page: http://www.arduino.cc/en/Guide/Troubleshooting

1.5 Creating and Saving a Sketch

Problem

You want to create a sketch and save it to your computer.

Solution

To open an editor window ready for a new sketch, launch the IDE (see Recipe 1.3), go
to the File menu, and select New. Paste the following code into the Sketch Editor win-
dow (it’s similar to the Blink sketch, but the blinks last twice as long):

const int ledPin = 13; // LED connected to digital pin 13
void setup()
{

pinMode(ledPin, OUTPUT);

void loop()
{

digitalWrite(ledPin, HIGH); // set the LED on

delay(2000); // wait for two seconds
digitalWrite(ledPin, LOW); // set the LED off
delay(2000); // wait for two seconds

Compile the code by clicking the compile button (the top-left button with a triangle
inside), or select Sketch—Verify/Compile (see Recipe 1.3).

Upload the code by clicking on the upload button, or choose File-»Upload to I/O board
(see Recipe 1.4). After uploading, the LED should blink, with each flash lasting two
seconds.

You can save this sketch to your computer by clicking the Save button, or select
File~Save.

You can save the sketch using a new name by selecting the Save As menu option. A
dialog box will open where you can enter the filename.

Discussion

When you save a file in the IDE, a standard dialog box for the operating system will
open. It suggests that you save the sketch to a folder called Arduino in your My Docu-
ments folder (or your Documents folder on a Mac). You can replace the default sketch

1.5 Creating and Saving a Sketch | 13

http://www.arduino.cc/en/Guide/Troubleshooting

name with a meaningful name that reflects the purpose of your sketch. Click Save to
save the file.

W

The default name is the word sketch followed by the current date. Se-

quential letters starting from a are used to distinguish sketches created

%s on the same day. Replacing the default name with something meaning-

" ful helps you to identify the purpose of a sketch when you come back
to it later.

If you use characters that the IDE does not allow (e.g., the space character), the IDE
will automatically replace these with valid characters.

Arduino sketches are saved as plain text files with the extension .pde. They are auto-
matically saved in a folder with the same name as the sketch.

You can save your sketches to any folder on your computer, but if you use the default
folder (the Arduino folder in your Documents folder) your sketches will automatically
appear in the Sketchbook menu of the Arduino software and be easier to locate.

B
)

If you have edited one of the examples from the Arduino download, you
will not be able to save the changed file using the same filename. This
W' preserves the standard examples intact. If you want to save a modified
" example, you will need to select another location for the sketch.

After you have made changes, you will see a dialog box asking if you want to save the
sketch when a sketch is closed.

LA
\

The § symbol following the name of the sketch in the top bar of the IDE
window indicates that the sketch code has changes that have not yet
918 been saved on the computer. This symbol is removed when you save the

° sketch.

The Arduino software does not provide any kind of version control, so if you want to
be able to revert to older versions of a sketch, you can use Save As regularly and give
each revision of the sketch a slightly different name.

Frequent compiling as you modify or add code is a good way to check for errors as you
write your code. It will be easier to find and fix any errors because they will usually be
associated with what you have just written.

\

W

Once a sketch has been uploaded onto the board there is no way to
download it back to your computer. Make sure you save any changes
~ Q" to your sketches that you want to keep.

14 | Chapter1: Getting Started

If you open sketches you get from other people that are not in a folder with the same
name as the sketch, the IDE will tell you and you can click OK to put them in a folder
with the same name.

W

SN Sketches must be located in a folder with the same name as the sketch.
"‘) The IDE will create the folder automatically when you save a new sketch.
N &8
15

1.6 Using Arduino

Problem

You want to get started with a project that is easy to build and fun to use.

Solution

This recipe provides a taste of some of the techniques that are covered in detail in later
chapters.

The sketch is based on the LED blinking code from the previous recipe, but instead of
using a fixed delay, the rate is determined by a light-sensitive sensor called a light de-
pendent resistor or LDR (see Recipe 6.2). Wire the LDR as shown in Figure 1-7.

00000000 o
Hoparoo® h\nmvmﬂgg
= DIGITAL ==
j . 4

:: mg @)E

o~ B ANALOG
/U oonooo Tmmm

Figure 1-7. Arduino with light dependent resistor

The following sketch reads the light level of an LDR connected to analog pin 0. The
light level striking the LDR will change the blink rate of the internal LED connected to
pin 13:

1.6 Using Arduino | 15

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

void setup()
{

pinMode(ledPin, OUTPUT); // enable output on the led pin

void loop()
{

int rate = analogRead(sensorPin); // read the analog input
Serial.println(rate);

rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
digitalWrite(ledPin, HIGH); // set the LED on

delay(rate); // wait duration dependent on light level
digitalWrite(ledPin, LOW); // set the LED off
delay(rate);
}
Discussion

The value of the 4.7K resistor is not critical. Anything from 1K to 10K can be used. The
light level on the LDR will change the voltage level on analog pin 0. The analogRead
command (see Chapter 6) provides a value that ranges from around 200 when the LDR
is dark to 800 or so when it is very bright. This value determines the duration of the
LED on and off times, so the blink rate increases with light intensity.

You can scale the blink rate by using the Arduino map function as follows:
const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks
const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
{

pinMode(ledPin, OUTPUT); // enable output on the led pin

void loop()

int rate = analogRead(sensorPin); // read the analog input

// the next line scales the blink rate between the min and max values

rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
digitalWrite(ledPin, HIGH); // set the LED on

delay(rate); // wait duration dependent on light level
digitalWrite(ledPin, LOW); // set the LED off
delay(rate);

}

Recipe 5.7 provides more details on using the map function to scale values.

16 | Chapter1: Getting Started

If you want to view the value of the rate variable on your computer, you can print this
to the Arduino Serial Monitor as shown in the revised loop code that follows. The
sketch will display the blink rate in the Serial Monitor. You open the Serial Monitor
window in the Arduino IDE (see Chapter 4 for more on using the Serial Monitor):

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks

const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
pinMode(ledPin, OUTPUT); // enable output on the led pin
Serial.begin(9600); // initialize Serial

void loop()

{
int rate = analogRead(sensorPin); // read the analog input

// the next line scales the blink rate between the min and max values
rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate

Serial.println(rate); // print rate to serial monitor
digitalWrite(ledPin, HIGH); // set the LED on

delay(rate); // wait duration dependent on light level
digitalWrite(ledPin, LOW); // set the LED off

delay(rate);

}

You can use the LDR to control the pitch of a sound by connecting a small speaker to
the pin, as shown in Figure 1-8.

Speaker or
Piezo
eoueofllovevecee " transducer
i NESOW OIS
g%?ﬂ DIGITAL =
Resistor

(fixed or variable)

Arduino

] ANALOG
oo |2 (B
N o8 nene [Ef]mm

Light
Dependant
Resistor

Figure 1-8. Connections for a speaker with the LDR circuit

1.6 Using Arduino | 17

You will need to increase the on/off rate on the pin to a frequency in the audio spectrum.
This is achieved, as shown in the following code, by dividing the rate by 100 in the line
after the map function:

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
{

pinMode(ledPin, OUTPUT); // enable output on the led pin

void loop()
{

int sensorReading = analogRead(sensorPin); // read the analog input
int rate = map(sensorReading, 200,800,minDuration, maxDuration);
rate = rate / 100; // add this line for audio frequency
digitalwrite(ledPin, HIGH); // set the LED on
delay(rate); // wait duration dependent on light level
digitalWrite(ledPin, LOW); // set the LED off
delay(rate);
}
See Also

See Chapter 9 for more on creating sound with Arduino.

18 | Chapter1: Getting Started

CHAPTER 2

Making the Sketch Do Your Bidding

2.0 Introduction

Though much of an Arduino project will involve integrating the Arduino board with
supporting hardware, you need to be able to tell the board what to do with the rest of
your project. This chapter introduces core elements of Arduino programming, showing
nonprogrammers how to use common language constructs and providing an overview
of the language syntax for readers who are not familiar with C or C++, the language
being used.

Since making the examples interesting requires making Arduino do something, the
recipes use physical capabilities of the board that are explained in detail in later chap-
ters. If any of the code in this chapter is not clear, feel free to jump forward, particularly
to Chapter 4 for more on serial output and Chapter 5 for more on using digital and
analog pins. You don’t need to understand all the code in the examples, though, to see
how to perform the specific capabilities that are the focus of the recipes. Here are some
of the more common functions used in the examples that are covered in the next few
chapters:

Serial.println(value);
Prints the value to the Serial Monitor on your computer; see Recipe 4.1
pinMode(pin, mode);
Configures a digital pin to read (input) or write (output) a digital value; see the
introduction to Chapter 5
digitalRead(pin);
Reads a digital value (HIGH or LOW) on a pin set for input; see Recipe 5.1
digitalWrite(pin, value);
Writes the digital value (HIGH or LOW) to a pin set for output; see Recipe 5.1

19

2.1 Structuring an Arduino Program

Problem

You are new to programming and want to understand the building blocks of an Arduino
program.

Solution

Programs for Arduino are usually referred to as sketches, to emphasize the agile nature
of development. The terms sketch and program are interchangeable. Sketches contain
code—the instructions the board will carry out. Code that needs to run only once (such
as to set up the board for your application) should be placed in the setup function.
Code to be run continuously after the initial setup has finished goes into the loop func-
tion. Here is a typical sketch:

const int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts
void setup()

pinMode(ledPin, OUTPUT); // initialize the digital pin as an output
// the loop() method runs over and over again,
void loop()

digitalWrite(ledPin, HIGH); // turn the LED on

delay(1000); // wait a second
digitalWrite(ledPin, LOW); // turn the LED off
delay(1000); // wait a second

When the board finishes uploading the code, or is turned on once it contains this code,
it starts at the top of the sketch and carries out the instructions sequentially. It runs the
code in setup once and then goes through the code in loop. When it gets to the end of
loop (marked by the closing bracket, }) it goes back to the beginning of loop.

Discussion

This example continuously flashes an LED by writing HIGH and LOW outputs to a pin.
See Chapter 5 to learn more about using Arduino pins. When the sketch begins, the
code in setup sets the pin mode (so it’s capable of lighting an LED). After the code in
setup is completed, the code in loop is repeatedly called (to flash the LED) for as long
as the Arduino board is powered on.

You don’t need to know this to write Arduino sketches, but experienced C/C++ pro-
grammers may wonder where the expected main() entry point function has gone. It’s
there, but it’s hidden under the covers by the Arduino build environment. The build

20 | Chapter2: Making the Sketch Do Your Bidding

process creates an intermediate file that includes the sketch code and the following
additional statements:

int main(void)
init();
setup();

for (55)
Loop();

return 0;

}

The first thing that happens is a call to an init() function that initializes the Arduino
hardware. Next, the sketch’s setup() function is called. Finally, the loop() function is
called over and over. Because the for loop never terminates, the return statement is
never executed.

See Also

Chapter 17 and http://www.arduino.cc/en/Hacking/BuildProcess provide more on the
build process.

2.2 Using Simple Primitive Types (Variables)

Problem

Arduino has different types of variables to efficiently represent values. You want to
know how to select and use these Arduino data types.

Solution

Although the int (short for integer, a 16-bit value in Arduino) data type is the most
common choice for the numeric values encountered in Arduino applications, you can
use Table 2-1 to determine the data type that fits the range of values your application
expects.

Table 2-1. Arduino data types

Numeric types Bytes Range Use

int 2 -32768 to 32767 Represents positive and negative integer values.

unsigned int 2 0t0 65535 Represents only positive values; otherwise, similar to int.

long 4 -2147483648 to Represents a very large range of positive and negative values.
2147483647

unsigned 4 4294967295 Represents a very large range of positive values.

long

2.2 Using Simple Primitive Types (Variables) | 21

http://www.arduino.cc/en/Hacking/BuildProcess

Numeric types Bytes Range Use

float 4 3.4028235E+38 to Represents numbers with fractions; use to approximate real-
-3.4028235E+38 world measurements.

double 4 Sameas float In Arduino, double is just another name for float.

boolean 1 false (0) or true (1) Represents true and false values.

char 1 -12810 127 Represents a single character. Can also represent a signed value

between-128 and 127.

byte 1 010255 Similar to char, but for unsigned values.

Other types

string Represents arrays of chaxrs (characters) typically used to contain text.

void Used only in function declarations where no value is returned.

Discussion

Except in situations where maximum performance or memory efficiency is required,
variables declared using int will be suitable for numeric values if the values do not
exceed the range (shown in the first row in Table 2-1) and if you don’t need to work
with fractional values. Most of the official Arduino example code declares numeric
variables as int. But sometimes you do need to choose a type that specifically suits your
application.

Sometimes you need negative numbers and sometimes you don’t, so numeric types
come in two varieties: signed and unsigned. unsigned values are always positive. Vari-
ables without the keyword unsigned in front are signed so that they can represent neg-
ative and positive values. One reason to use unsigned values is when the range of
signed values will not fit the range of the variable (an unsigned variable has twice the
capacity of a signed variable). Another reason programmers choose to use unsigned
types is to clearly indicate to people reading the code that the value expected will never
be a negative number.

boolean types have two possible values: true or false. They are commonly used for
things like checking the state of a switch (if it’s pressed or not). You can also use HIGH
and LOW as equivalents to true and false where this makes more sense; digital
Write(pin, HICH) is a more expressive way to turn on an LED than digitalWrite(pin,
true) or digitalWrite(pin,1), although all of these are treated identically when the
sketch actually runs, and you are likely to come across all of these forms in code posted
on the Web.

See Also

The Arduino reference at http://www.arduino.cc/en/Reference/HomePage provides de-
tails on data types.

22 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/HomePage

2.3 Using Floating-Point Numbers

Problem

Floating-point numbers are used for values expressed with decimal points (this is the
way to represent fractional values). You want to calculate and compare these values in
your sketch.

Solution

The following code shows how to declare floating-point variables, illustrates problems
you can encounter when comparing floating-point values, and demonstrates how to
overcome them:

* Floating-point example
* This sketch initialized a float value to 1.1
* It repeatedly reduces the value by 0.1 until the value is 0

*/

float value = 1.1;
void setup()
{

Serial.begin(9600);

void loop()

value = value - 0.1; // reduce value by 0.1 each time through the loop

if(value == 0)
Serial.println("The value is exactly zero");

else if(fabs(value) < .0001) // function to take the absolute value of a float
Serial.println("The value is close enough to zero");

else
Serial.println(value);

delay(100);

Discussion

Floating-point math is not exact, and values returned can have a small approximation
error. The error occurs because floating-point values cover a huge range, so the internal
representation of the value can only hold an approximation. Because of this, you need
to test if the values are within a range of tolerance rather than exactly equal.

The output from this sketch is as follows:

1.00
0.90

2.3 Using Floating-Point Numbers | 23

.80
.70
.60
.50
.40
.30
.20
0.10
The value is close enough to zero
-0.10
-0.20

O O O OO OO

The output continues to produce negative numbers.

You may expect the loop to stop after value is 0.1 and then 0.1 is subtracted from this.
But value never equals zero; it gets very close, but that is not good enough to pass the
test if (value == 0). Thisis because the only memory-efficient way that floating-point
numbers can contain the huge range in values they can represent is by storing an ap-
proximation of the number.

The solution to this is to check if a variable is close to the desired value, as shown in
the code in this recipe’s Solution:

else if(fabs(value) < .0001) // function to take absolute value of a float
Serial.println("The value is close enough to zero");

This tests if the variable value is within 0.0001 of the desired target and prints a message
if so. The function named fabs (short for floating-point absolute value) returns the ab-
solute value of a floating-point variable. The function returns the magnitude of the
value, and if this is within 0.0001 of 0, the code will print the message that the values
are close enough.

\

W

Floating point approximates numbers because it only uses 32 bits to
hold all values within a huge range. Eight bits are used for the decimal
* Qs multiplier (the exponent), and that leaves 24 bits for the sign and
" value—only enough for seven significant decimal digits.

Although float and double are exactly the same on Arduino, doubles do
‘E‘% have a higher precision on many other platforms. If you are importing

code that uses float and double from another platform, check that there
is sufficient precision for your application.

See Also

The Arduino reference for float: http://www.arduino.cc/en/Reference/Float

24 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/Float

2.4 Working with Groups of Values

Problem

You want to create and use a group of values (called arrays). The arrays may be a simple
list or they could have two or more dimensions. You want to know how to determine
the size of the array and how to access the elements in the array.

Solution

This sketch creates two arrays: an array of integers for pins connected to switches and
an array of pins connected to LEDs, as shown in Figure 2-1:

/*

array sketch

an array of switches controls an array of LEDs

see Chapter 5 for more on using switches

see Chapter 7 for information on LEDs

*/
int inputPins[] = {2,3,4,5}; // create an array of pins for switch inputs
int ledPins[] = {10,11,12,13}; // create array of output pins for LEDs
void setup()
for(int index = 0; index < 4; index++)
pinMode(ledPins[index], OUTPUT); // declare LED as output
pinMode(inputPins[index], INPUT); // declare pushbutton as input
digitalWrite(inputPins[index],HIGH); // enable pull-up resistors
//(see Recipe 5.2)
}
}
void loop(){
for(int index = 0; index < 4; index++)
{
int val = digitalRead(inputPins[i]); // read input value
if (val == LOW) // check if the switch is pressed
digitalWrite(ledPins[index], HIGH); // turn LED on if switch is pressed

else

digitalWrite(ledPins[i], LOW); // turn LED off

2.4 Working with Groups of Values | 25

4
o

Arduino

oo
oo
o
I
—
TN T S _EBEBe ANALOG
[Vo) EARTAOEE o r~m
. oooogo)

Figure 2-1. Connections for LEDs and switches

Discussion

Arrays are collections of consecutive variables of the same type. Each variable in the
collection is called an element. The number of elements is called the dimension of the
array.

The preceding example demonstrates a common use of arrays in Arduino code: storing
a collection of pins. Here the pins connect to switches and LEDs (a topic covered in
more detail in Chapter 5). The important parts of this example are the declaration of
the array and access to the array elements.

The following line of code declares (creates) an array of integers with four elements and
initializes each element. The first element is set equal to 2, the second to 3, and so on:

int inputPins[] = {2,3,4,5};

26 | Chapter2: Making the Sketch Do Your Bidding

If you don’t need to initialize the values when you declare an array (perhaps the values
will only be available when the sketch is running) you can declare the array as follows:

int array[4];

This declares an array of four elements with the initial value of each element set to zero.
The number within the square brackets ([]) is the dimension, and this sets the number
of elements. This array has a dimension of four and can hold, at most, four integer
values. The dimension can be omitted if array declaration contains initializers (as shown
in the first example) because the compiler figures out how big to make the array by
counting the number of initializers.

The first element of the array is element[0]:

int firstElement = inputPin[0]; // this is the first element
The last element is one less than the dimension, so in the preceding example, with a
dimension of four, the last element is element 3:

Int lastElement = inputPin[3]; // this is the last element
It may seem odd that an array with a dimension of four has the last element accessed
using array[3], but because the first element is array[0], the four elements are:

array[o],array[1],array[2],array[3]

In the previous sketch, the four elements are accessed using a for loop:

for(int index = 0; index < 4; index++)

//get the pin number by accessing each element in the pin arrays
pinMode(ledPins[index], OUTPUT); // declare LED as output
pinMode(inputPins[index], INPUT); // declare pushbutton as input

}

This loop will step through the variable index with values starting at 0 and ending at
3. It is a common mistake to accidentally access an element that is beyond the actual
dimension of the array. This is a bug that can have many different symptoms and care
must be taken to avoid it. One way to keep your loops under control is to set the
dimension of an array by using a constant as follows:

const int PIN_COUNT = 4; // define a constant for the number of elements
int inputPins[PIN_COUNT] = {2,3,4,5};

for(int index = 0; index < PIN_COUNT; index++)
pinMode(inputPins[index], INPUT);

The compiler will not report an error if you accidentally try to store or
g read beyond the size of the array. You must be careful that you only
access elements that are within the bounds you have set. Using a con-

stant to set the dimension of an array and in code referring to its elements
helps your code stay within the bounds of the array.

2.4 Working with Groups of Values | 27

Another common use of arrays is to hold a string of text characters. In Arduino code,
these are called character strings (strings for short). A character string consists of one
or more characters, followed by the null character (the value 0) to indicate the end of
the string.

W

The null at the end of a character string is not the same as the character
0. The null has an ASCII value of 0, whereas 0 has an ASCII value of 48.

Methods to use strings are covered in Recipes 2.5 and 2.6.

See Also
Recipe 5.2; Recipe 7.1

2.5 Using Arduino String Functionality

Problem

You want to manipulate text. You need to copy it, add bits together, and determine
the number of characters.

Solution

Recipe 2.4 describes Arduino arrays in general. Text is stored in arrays of characters.
They are usually called strings. Arduino has an added capability for using an array of
characters called String that can store and manipulate text strings.

\

W N

The word String with an uppercase S refers to the Arduino text capability
provided by the Arduino String library. The word string with alowercase
s s refers to the group of characters rather than the Arduino String
" functionality.

This recipe demonstrates how to use Arduino strings.

N

The String capability was introduced in version 19 of Arduino. If you
are using an older version, you can use the TextString library; see the
9l link at the end of this recipe.

Load the following sketch onto your board, and open the Serial Monitor to view the
results:

28 | Chapter2: Making the Sketch Do Your Bidding

/*
Basic_Strings sketch

*/

String text1i = "This string";
String text2 = " has more text";
String text3; // to be assigned within the sketch

void setup()
Serial.begin(9600);

Serial.print(text1);

Serial.print(" is ");
Serial.print(text1.length());
Serial.println(" characters long.");

Serial.print("text2 is ");
Serial.print(text2.length());
Serial.println(" characters long.");

textl.concat(text2);
Serial.println("textl now contains: ");
Serial.println(text1);

}

void loop()
{
}

Discussion

This sketch creates two variables of type String, called message and anotherMessage.
Variables of type String have built-in capabilities for manipulating text. The statement
message.length() returns (provides the value of) the length (number of characters) in
the string message.

message.concat(anotherMessage) combines the contents of strings; in this case, it ap-
pends the contents of anotherMessage to the end of message (concat is short for
concatenate).

The Serial Monitor will display the following:

This string is 11 characters long.
text2 is 14 characters long.

text1 now contains:

This string has more text

Another way to combine strings is to use the string addition operator. Add these two
lines to the end of the setup code:

text3 = text1 + " and more";
Serial.println(text3);

2.5 Using Arduino String Functionality | 29

The new code will result in the Serial Monitor adding the following line to the end of
the display:
This is a string with more text and more

You can use the index0f and lastIndex0Of functions to find an instance of a particular
character in a string.

W

- Because the String class is a new addition to Arduino, you will come
o across a lot of code that uses arrays of characters rather than the
T Way string type. See Recipe 2.6 for more on using arrays of characters with-

" out the help of the Arduino String functionality.

If you see a line such as the following;:

char oldString[] = "this is a character array";
the code is using C-style character arrays (see Recipe 2.6). If the declaration looks like
this:

String newString = "this is a string object";
the code uses Arduino Strings. To convert a C-style character array to an Arduino
String, just assign the contents of the array to the String object:

char oldString[] = "I want this character array in a String object";
String newsString = oldString;

See Also
The Arduino distribution provides String example sketches.

Tutorials for the new String library are available at hitp://arduino.cc/en/Tutorial/Home
Page, and a tutorial for the original String library is available at http://www.arduino.cc/
en/Tutorial/TextString.

2.6 Using C Character Strings

Problem

You want to understand how to use raw character strings: you want to know how to
create a string, find its length, and compare, copy, or append strings. The C language
does not support the Arduino-style String capability, so you want to understand code
written to operate with primitive character arrays.

30 | Chapter2: Making the Sketch Do Your Bidding

http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Tutorial/HomePage
http://www.arduino.cc/en/Tutorial/TextString
http://www.arduino.cc/en/Tutorial/TextString

Solution

Arrays of characters are sometimes called character strings (or simply strings for short).
Recipe 2.5 describes Arduino arrays in general. This recipe describes functions that
operate on character strings.
You declare strings like this:

char StringA[8]; // declare a string of up to 7 chars plus terminating null
char StringB[8] = "Arduino"; // as above and init(ialize) the string to
"Arduino";

char StringC[16] = "Arduino"; // as above, but string has room to grow

char StringD[] = "Arduino"; // the compiler inits the string

and calculates size

Use strlen (short for string length) to determine the number of characters before the
null:
int length = strlen(string); // return the number of characters in the string

length will be O for StringA and 7 for the other strings shown in the preceding code.
The null that indicates the end of the string is not counted by strlen.

Use strepy (short for string copy) to copy one string to another:

strcpy(destination, source); // copy string source to destination
Use strncpy to limit the number of characters to copy (useful to prevent writing more
characters than the destination string can hold). You can see this used in Recipe 2.7:

strncpy(destination, source, 6); // copy up to 6 characters from source to
destination

Use strcat (short for string concatenate) to append one string to the end of another:

strcat(destination, source); // append source string to the end of the
destination string

N

Always make sure there is enough room in the destination when copying

or concatenating strings. Don’t forget to allow room for the terminating
&%

o null.

Use stremp (short for string compare) to compare two strings. You can see this used in
Recipe 2.7:
if(stremp(str, "Arduino") == 0)
// do something if the variable str is equal to "Arduino"

Discussion

Text is represented in the Arduino environment using an array of characters called
strings. A string consists of a number of characters followed by a null (the value 0). The
null is not displayed, but it is needed to indicate the end of the string to the software.

2.6 Using C Character Strings | 31

See Also

See one of the many online C/C++ reference pages, such as http://www.cplusplus.com/
reference/clibrary/cstring/ and http://www.cppreference.com/wiki/string/c/start.

2.7 Splitting Comma-Separated Text into Groups

Problem

You have a string that contains two or more pieces of data separated by commas (or
any other separator). You want to split the string so that you can use each individual
part.

Solution

This sketch prints the text found between each comma:

/*
* SplitSplit sketch
* split a comma-separated string

*/

String message= "Peter,Paul,Mary"; // an example string
int commaPosition; // the position of the next comma in the string

void setup()

Serial.begin(9600);

void loop()

Serial.println(message); // show the source string
do
{

commaPosition = message.index0f(',");

if(commaPosition != -1)

{

Serial.println(message.substring(0,commaPosition));
message = message.substring(commaPosition+1, message.length());

else
{ // here after the last comma is found
if(message.length() > 0)
Serial.println(message); // if there is text after the last comma,
print it
}
}
while(commaPosition >=0);
delay(5000);
}

32 | Chapter2: Making the Sketch Do Your Bidding

http://www.cplusplus.com/reference/clibrary/cstring/
http://www.cplusplus.com/reference/clibrary/cstring/
http://www.cppreference.com/wiki/string/c/start

The Serial Monitor will display the following:

Peter,Paul,Mary
Peter
Paul

Discussion

This sketch uses String functions to extract text from between commas. The following
code:

commaPosition = message.indexOf(',");

sets the variable commaPosition with the position of the first comma in the String named
message (it will be set to -1 if no comma is found). If there is a comma, the substring
function is used to print the text from the beginning of the string to the position of the
comma. The text that was printed is removed from message in this line:

message = message.substring(commaPosition+1, message.length());

substring returns a string starting from commaPosition+1 (the position just after the first
comma) up to the length of the message. This results in that message containing only
the text following the first comma. This is repeated until no more commas are found
(commaIndex will be equal to -1).

If you are an experienced programmer, you can also use the low-level functions that
are part of the standard C library. The following sketch has similar functionality to the
preceding one using Arduino strings:
/*
* SplitSplit sketch
* split a comma-separated string

*/

const int MAX_STRING_LEN = 20; // set this to the largest string you'll process
char stringlist[] = "Peter,Paul,Mary"; // an example string

char stringBuffer[MAX_STRING_LEN+1]; // a static buffer for computation and
output

void setup()

Serial.begin(9600);

void loop()
{

char *str;
char *p;
strncpy(stringBuffer, stringlist, MAX STRING LEN); // copy source string
Serial.println(stringBuffer); // show the source string
for(str = strtok r(stringBuffer, ",", 8p); // split using comma

str; // loop while str is not null

str = strtok_r(NULL, ",", &p) // get subsequent tokens

)

2.7 Splitting Comma-Separated Text into Groups | 33

{
Serial.println(str);

if(stremp(str, "Paul") == 0)
Serial.println("found Paul");

delay(5000);

The core functionality comes from the function named strtok_r (the name of the ver-
sion of strtok that comes with the Arduino compiler). The first time you call
strtok_r you pass it the string you want to tokenize (separate into individual values).
But strtok_r overwrites the characters in this string each time it finds a new token, so
it’s best to pass a copy of the string as shown in this example. Each call that follows
uses a NULL to tell the function that it should move on to the next token. In this example,
each token is printed to the serial port and also compared to a target string ("Paul").

If your tokens consist only of numbers, see Recipe 4.5. This shows how to extract
numeric values separated by commas in a stream of serial characters.

See Also

Recipe 2.5; online references to the C/C++ functions strtok_r and strcmp

2.8 Converting a Number to a String

Problem

You need to convert a number to a string, perhaps to show the number on an LCD or
other display.

Solution

The String variable will convert numbers to strings of characters automatically. You
can use literal values, or the contents of a variable. For example, the following code
will work:

String myNumber = 1234;
As will this:

int value = 127
String myReadout = "The reading was ";
myReadout.concat(value);

Or this:

int value = 127;
String myReadout = "The reading was ";
myReadout += value;

34 | Chapter2: Making the Sketch Do Your Bidding

Discussion

If you are converting a number to display as text on an LCD or serial device, the simplest
solution is to use the conversion capability built into the LCD and Serial libraries (see
Recipe 4.2). But perhaps you are using a device that does not have this built-in support
(see Chapter 13) or you want to manipulate the number as a string in your sketch.

The Arduino String class automatically converts numerical values when they are as-
signed to a String variable. You can combine (concatenate) numeric values at the end
of a string using the concat function or the string + operator.

W N

The + operator is used with number types as well as strings, but it be-
haves differently with each.

The following code results in number having a value of 13:
int number = 12;
number += 1;
With a String, as shown here:
String textNumber = 12
textNumber += 1;

textNumber is the text string "121".

Prior to the introduction of the String class, it was common to find Arduino code using
the itoa or 1toa function. The names come from “integer to ASCII” (itoa) and “long
to ASCII” (1toa). The String version described earlier is easier to use, but the following
will help if you want to understand code that uses itoa or 1toa.

These functions take three parameters: the value to convert, the buffer that will hold
the output string, and the number base (10 for a decimal number, 16 for hex, and 2 for
binary).

The following sketch illustrates how to convert numeric values using 1toa:

/*
* NumberToString
* Creates a string from a given number

*/
void setup()
{

Serial.begin(9600);

char buffer[12]; // long data type has 11 characters (including the
// minus sign) and a terminating null

2.8 Converting a Number toa String | 35

void loop()

long value = 12345;
1toa(value, buffer, 10);
Serial.print(value);
Serial.print(" has ");
Serial.print(strlen(buffer));
Serial.println(" digits");
value = 123456789;
ltoa(value, buffer, 10);
Serial.print(value);
Serial.print(" has ");
Serial.print(strlen(buffer));
Serial.println(" digits");
delay(1000);

}

Your buffer must be large enough to hold the maximum number of characters in the
string. For 16-bit integers, that is seven characters (five digits, a possible minus sign,
and a terminating O that always signifies the end of a string); 32-bit long integers need
12 character buffers (10 digits, the minus sign, and the terminating 0). No warning is
given if you exceed the buffer size; this is a bug that can cause all kinds of strange
symptoms, because the overflow will corrupt some other part of memory that may be
used by your program. The easiest way to handle this is to always use a 12-character
buffer and always use 1toa because this will work on both 16-bit and 32-bit values.

2.9 Converting a String to a Number

Problem

You need to convert a string to a number. Perhaps you have received a value as a string
over a communication link and you need to use this as an integer or floating-point value.

Solution

There are a number of ways to solve this. If the string is received as serial data, it can
be converted on the fly as each character is received. See Recipe 4.3 for an example of
how to do this using the serial port.

Another approach to converting text strings representing numbers is to use the C lan-
guage conversion function called atoi (for int variables) or atol (for long variables).

This code fragment terminates the incoming digits on any character that is not a digit
(or if the buffer is full):

int blinkRate; // blink rate stored in this variable
char strValue[6]; // must be big enough to hold all the digits and the
// 0 that terminates the string
int index = 0; // the index into the array storing the received digits

36 | Chapter2: Making the Sketch Do Your Bidding

void loop()
{

if(Serial.available())
{

char ch = Serial.read();
if(index < 5 & ch >= '0' && ch <= '9"){

strValue[index++] = ch; // add the ASCII character to the string;
}

else

// here when buffer full or on the first non digit

strValue[index] = 0; // terminate the string with a 0
blinkRate = atoi(strValue); // use atoi to convert the string to an int
index = 0;
}
}
blink();
}
Discussion

The obscurely named atoi (for ASCII to int) and atol (for ASCII to long) functions
convert a string into integers or long integers. To use them, you have to receive and
store the entire string in a character array before you can call the conversion function.
The code creates a character array named strValue that can hold up to five digits (it’s
declared as char strValue[6] because there must be room for the terminating null). It
fills this array with digits from Serial.read until it gets the first character that is not a
valid digit. The array is terminated with a null and the atoi function is called to convert
the character array into the variable blinkRate.

A function called blink is called that uses the value stored in blinkRate. The blink
function is shown in Recipe 4.3.

As mentioned in the warning in Recipe 2.4, you must be careful not to exceed the bound
of the array. If you are not sure how to do that, read through Recipe 2.13.

This example builds a character array, rather than using the String class. At the time
of this writing, the Arduino String library did not have the functionality to convert a
string of numbers into a numeric value.

See Also

See one of the many online C/C++ reference pages, such as http://www.cplusplus.com/
reference/clibrary/cstdlib/atoi/ or http://www.cppreference.com/wiki/string/c/atoi.

2.9 Converting a String toa Number | 37

http://www.cplusplus.com/reference/clibrary/cstdlib/atoi/
http://www.cplusplus.com/reference/clibrary/cstdlib/atoi/
http://www.cppreference.com/wiki/string/c/atoi

2.10 Structuring Your Code into Functional Blocks

Problem

You want to know how to add functions to a sketch, and the correct amount of func-
tionality to go into your functions. You also want to understand how to plan the overall
structure of the sketch.

Solution

Functions are used to organize the actions performed by your sketch into functional
blocks. Functions package functionality into well-defined inputs (information given to
a function) and outputs (information provided by a function) that make it easier to
structure, maintain, and reuse your code. You are already familiar with the two func-
tions that are in every Arduino sketch: setup and loop. You create a function by
declaring its return type (the information it provides), its name, and any optional pa-
rameters (values) that the function will receive when it is called. Here is a simple func-
tion that just blinks an LED. It has no parameters and doesn’t return anything (the
void preceding the function indicates that nothing will be returned):

// blink an LED once
void blink1()

{
digitalWrite(13,HIGH); // turn the LED on
delay(500); // wait 500 milliseconds
digitalWrite(13,LOW); // turn the LED off
delay(500); // wait 500 milliseconds
}

The following version has a parameter (the integer named count) that determines how
many times the LED will flash:

// blink an LED the number of times given in the count parameter
void blink2(int count)

while(count > 0) // repeat until count is no longer greater than zero

digitalWrite(13,HICH);
delay(500);
digitalWrite(13,LOW);
delay(500);
count = count -1; // decrement count
}
}

That version checks to see if the value of count is 0. If not, it blinks the LED and then
reduces the value of count by one. This will be repeated until count is no longer greater
than o.

38 | Chapter2: Making the Sketch Do Your Bidding

A parameter is sometimes referred to as an argument in some documen-

tation. For practical purposes, you can treat these terms as meaning the
N .

s same thing.

Here is an example sketch that takes a parameter and returns a value. The parameter
determines the LED on and off times (in milliseconds). The function continues to flash
the LED until a button is pressed, and the number of times the LED flashed is returned
from the function:

/*
blink3 sketch
demonstrates calling a function with a parameter and returning a value
uses the same wiring as the pull-up sketch from Recipe 5.2
The LED flashes when the program starts
and stops when a switch connected to pin 2 is pressed
the program prints the number of times the LED flashes.

*/
const int ledPin = 13; // output pin for the LED
const int inputPin = 2; // input pin for the switch

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT);
digitalWrite(inputPin,HICH); // use internal pull-up resistor (Recipe 5.2)
Serial.begin(9600);
}

void loop(){
Serial.println("Press and hold the switch to stop blinking");
int count = blink3(250); // blink the LED 250ms on and 250ms off
Serial.print("The number of times the switch blinked was ");
Serial.println(count);

}

// blink an LED using the given delay period
// return the number of times the LED flashed
int blink3(int period)

int result = 0;
int switchVal = HIGH; //with pull-ups, this will be high when switch is up

while(switchVal == HIGH) // repeat this loop until switch is pressed
// (it will go low when pressed)
{

digitalWrite(13,HICH);

delay(period);

digitalWrite(13,LO0W);

delay(period);

result = result + 1; // increment the count

switchval = digitalRead(inputPin); // read input value

2.10 Structuring Your Code into Functional Blocks | 39

// here when switchVal is no longer HICGH because the switch is pressed
return result; // this value will be returned

}

Discussion

The code in this recipe’s Solution illustrates the three forms of function call that you
will come across. blink1 has no parameter and no return value. Its form is:

void blink1()

// implementation code goes here...

}

blink2 takes a single parameter but does not return a value:
void blink2(int count)

// implementation code goes here...

blink3 has a single parameter and returns a value:
int blink3(int period)

// implementation code goes here...

}

The data type that precedes the function name indicates the return type (or no return
type if void). When declaring the function (writing out the code that defines the function
and its action), you do not put a semicolon following the parenthesis at the end. When
you use (call) the function, you do need a semicolon at the end.

Most of the functions you come across will be some variation on these forms. For
example, here is a function that takes a parameter and returns a value:

int sensorPercent(int pin)

{

int percent;

val = analogRead(pin); // read the sensor (ranges from 0 to 1023)
percent = map(val,0,1023,0,100); // percent will range from 0 to 100.
return percent;

}

The function name is sensorPercent. It is given an analog pin number to read and
returns the value as a percent (see Recipe 5.7 for more on analogRead and map). The
int in front of the declaration tells the compiler (and reminds the programmer) that
the function will return an integer. When creating functions, choose the return type
appropriate to the action the function performs. This function returns an integer value
from 0 to 100, so a return type of int is appropriate.

40 | Chapter2: Making the Sketch Do Your Bidding

It is recommended that you give your functions meaningful names, and

it is a common practice to combine words by capitalizing the first letter

W of each word, except for the first word. Use whatever style you prefer,

" but it helps others who read your code if you keep your naming style
consistent.

sensorPercent has a parameter called pin (when the function is called, pin is given the
value that is passed to the function).

The body of the function (the code within the brackets) performs the action you want—
here it reads a value from an analog input pin and maps it to a percentage. In the
preceding example, the percentage is temporarily held in a variable called percent. The
following statement causes the value held in the temporary variable percent to be re-
turned to the calling application:

return percent;

The same functionality can be achieved without using a temporary variable:

int sensorPercent(int pin)

{
val = analogRead(pin); // read the sensor (ranges from 0 to 1023)
return map(val,0,1023,0,100); // percent will ranges from 0 to 100.

}

Here is how the function can be called:

// print the percent value of 6 analog pins
for(int sensorPin = 0; sensorPin < 6; sensorPin++)

{

Serial.print("Percent of sensor on pin ");
Serial.print(sensorPin);

Serial.print(" is ");

int val = sensorPercent(sensorPin);
Serial.print(val);

}

See Also

The Arduino function reference page: http://www.arduino.cc/en/Reference/FunctionDe
claration

2.11 Returning More Than One Value from a Function

Problem

You want to return two or more values from a function. Recipe 2.10 provided examples
for the most common form of a function, one that returns just one value or none at all.
But sometimes you need to modify or return more than one value.

2.11 Returning More Than One Value from a Function | 41

http://www.arduino.cc/en/Reference/FunctionDeclaration
http://www.arduino.cc/en/Reference/FunctionDeclaration

Solution

There are various ways to solve this. The easiest to understand is to have the function
change some global variables and not actually return anything from the function:
/*
swap sketch
demonstrates changing two values using global variables

*/

int x; // x and y are global variables
int y;

void setup() {
Serial.begin(9600);

void loop(){
x = random(10); // pick some random numbers
y = random(10);

Serial.print("The value of x and y before swapping are: ");

Serial.print(x); Serial.print(","); Serial.println(y);
swap();

Serial.print("The value of x and y after swapping are: ");

Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();
delay(1000);

// swap the two global values
void swap()

int temp;
temp = x;
X=Y;

y = temp;

The swap function changes two values by using global variables. Global variables are
easy to understand (global variables are values that are accessible everywhere and any-
thing can change them), but they are avoided by experienced programmers because it’s
easy to inadvertently modify the value of a variable or to have a function stop working
because you changed the name or type of a global variable elsewhere in the sketch.

A safer and more elegant solution is to pass references to the values you want to change
and let the function use the references to modify the values. This is done as follows:
/*
functionReferences sketch
demonstrates returning more than one value by passing references

*/

42 | Chapter2: Making the Sketch Do Your Bidding

void swap(int &valuel, int &value2); // functions with references must be
declared before use

void setup() {
Serial.begin(9600);

void loop(){
int x = random(10); // pick some random numbers
int y = random(10);

Serial.print("The value of x and y before swapping are: ");

Serial.print(x); Serial.print(","); Serial.println(y);
swap(x,y);

Serial.print("The value of x and y after swapping are: ");
Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();

delay(1000);

// swap the two given values
void swap(int 8valuel, int &value2)

int temp;

temp = valuel;
valuel = value2;
value2 = temp;

}

Discussion

The swap function is similar to the functions with parameters described in Rec-
ipe 2.10, but the ampersand (&) symbol indicates that the parameters are references.
This means changes in values within the function will also change the value of the
variable that is given when the function is called. You can see how this works by first
running the code in this recipe’s Solution and verifying that the parameters are swap-
ped. Then modify the code by removing all four ampersands (the two in the declaration
at the top and the two in the definition at the bottom).

The two changed lines should look like this:

void swap(int value1, int value2); // functions with references must be declared
before use

void swap(int valuei, int value2)

Running the code shows that the values are not swapped—changes made within the
function are local to the function and are lost when the function returns.

2.11 Returning More Than One Value from a Function | 43

A function declaration is a prototype—a specification of the name, the
types of values that may be passed to the function, and the function’s
return type. The Arduino build process usually creates the declarations
for you under the covers. But when you use nonstandard (for Arduino)
syntax, the build process will not create the declaration and you need
to add it to your code yourself, as done here with the line just before
setup.

A function definition is the function header and the function body. The
function header is similar to the declaration except it does not have a
semicolon at the end. The function body is the code within the brackets
that is run to perform some action when the function is called.

2.12 Taking Actions Based on Conditions

Problem

You want to execute a block of code only if a particular condition is true. For example,
you may want to light an LED if a switch is pressed or if an analog value is greater than
some threshold.

Solution
The following code uses the wiring shown in Recipe 5.1:
/*
Pushbutton sketch
a switch connected to pin 2 lights the LED on pin 13

*/
const int ledPin = 13; // choose the pin for the LED
const int inputPin = 2; // choose the input pin (for a pushbutton)

void setup() {
pinMode(ledPin, OUTPUT); // declare LED pin as output
pinMode(inputPin, INPUT); // declare pushbutton pin as input

void loop(){
int val = digitalRead(inputPin); // read input value
if (val == HIGH) // check if the input is HIGH

digitalWrite(ledPin, HIGH); // turn LED on if switch is pressed
}
Discussion

The if statement is used to test the value of digitalRead. An if statement must have a
test within the parentheses that can only be true or false. In the example in this recipe’s

44 | Chapter2: Making the Sketch Do Your Bidding

Solution, it’s val == HIGH, and the code block following the if statement is only exe-
cuted if the expression is true. A code block consists of all code within the brackets (or
if you don’t use brackets, the block is just the next executable statement terminated by
a semicolon).

If you want to do one thing if a statement is true and another if it is false, use the
if...else statement:

J*
Pushbutton sketch
a switch connected to pin 2 lights the LED on pin 13
*/
const int ledPin = 13; // choose the pin for the LED
const int inputPin = 2; // choose the input pin (for a pushbutton)
void setup() {
pinMode(ledPin, OUTPUT); // declare LED pin as output
pinMode(inputPin, INPUT); // declare pushbutton pin as input

void loop(){
int val = digitalRead(inputPin); // read input value
if (val == HIGH) // check if the input is HICH

// do this if val is HICH
digitalWrite(ledPin, HIGH); // turn LED on if switch is pressed

else

// else do this if val is not HIGH
digitalWrite(ledPin, LOW); // turn LED off

}

See Also
See the discussion on Boolean types in Recipe 2.2.
2.13 Repeating a Sequence of Statements

Problem

You want to repeat a block of statements while an expression is true.

2.13 Repeating a Sequence of Statements | 45

Solution
A while loop repeats one or more instructions while an expression is true:

while(analogRead(sensorPin) > 100)

flashLED(); // call a function to turn an LED on and off

This code will execute the statements in the block within the brackets, {}, while the
value from analogRead is greater than 100. This could be used to flash an LED as a
visible warning that some value exceeded a threshold. The LED is off when the sensor
value is 100 or less; it flashes continuously when the value is greater than 100.

\

W

The {} symbols that define a block of code are given various names,
including brackets, curly braces, and braces. This book refers to them
~ Q" as brackets.

Discussion

Brackets define the extent of the code block to be executed in a loop. If brackets are
not used, only the first line of code will be repeated in the loop:
while(analogRead(sensorPin) > 100)
flashLED(); // line immediately following the loop expression is executed

Serial.print(analogRead(sensorPin)); // this is not executed until after
// the while loop finishes!!!

Loops without brackets can behave unexpectedly if you have more than
one line of code.

The do. . .while loop is similar to the while loop, but the instructions in the code block
are executed before the condition is checked. Use this form when you must have the
code executed at least once, even if the expression is false:

do
flashLED(); // call a function to turn an LED on and off

while (analogRead(sensorPin) > 100);

The preceding code will flash the LED at least once and will keep flashing as long as
the value read from a sensor is greater than 100. If the value is not greater than 100, the
LED will only flash once. This code could be used in a battery-charging circuit, if it
were called once every 10 seconds or so: a single flash shows that the circuit is active,
whereas continuous flashing indicates the battery is charged.

46 | Chapter2: Making the Sketch Do Your Bidding

See Also
Chapters 4 and 5

2.14 Repeating Statements with a Counter

Problem

You want to repeat one or more statements a certain number of times. The for loop is
similar to the while loop, but you have more control over the starting and ending
conditions.

Solution
This sketch counts from zero to four by printing the value of the variable 1 in a for loop:

/*
ForLoop sketch
demonstrates for loop

*/

void setup() {
Serial.begin(9600);}

void loop(){
Serial.printIn("for(int i=0; i < 4; i++)");
for(int i=0; i < 4; i++)

Serial.println(i);
}
}

The output from this is as follows:
for(int i=0; i < 4; i++)
0

1
2
3

Discussion

A for loop consists of three parts: initialization, conditional test, and iteration (a state-
ment that is executed at the end of every pass through the loop). Each part is separated
by a semicolon. In the code in this recipe’s Solution, int i=0; initializes the variable
ito0;1 < 4; tests the variable to see if it’s less than 4; and i++ increments i.

2.14 Repeating Statements with a Counter | 47

A for loop can use an existing variable, or it can create a variable for exclusive use in
the loop. This version uses the value of the variable j created earlier in the sketch:

int j;

Serial.println("for(j=0; j < 4; j++)");
for(j=0; j < 4; j++)

{

Serial.println(j);
}

This is almost the same as the earlier example, but it does not have the int keyword in
the initialization part because the variable j was already defined. The output of this
version is similar to the output of the earlier version:

for(j=0; i < 4; i++)
0
1
2
3
You can leave out the initialization part completely if you want the loop to use the value
of a variable defined earlier. This code starts the loop with j equal to 1:
int j = 1;
Serial.println("for(; j < 4; j++)");
for(5 j <45 j++)

Serial.println(j);

The preceding code prints the following;:
for(; j < 4; j++)
1
2
3

You control when the loop stops in the conditional test. The previous examples test if
the loop variable is less than 4 and will terminate when the condition is no longer true.

If your loop variable starts at 0 and you want it to repeat four times,
your conditional statement should test for a value less than 4. The loop
W repeats while the condition is true and there are four values that are less
" than 4 with a loop starting at 0.

The following code tests if the value of the loop variable is less than or equal to 4. It
will print the digits from 0 to 4:

Serial.println("for(int i=0; i <= 4; i++)");

for(int i=0; i <= 4; i++)

{

48 | Chapter2: Making the Sketch Do Your Bidding

Serial.println(i);

The third part of a for loop is the iterator statement that gets executed at the end of
each pass through the loop. This can be any valid C/C++ statement. The following
increases the value of i by two on each pass:

Serial.println("for(int i=0; i < 4; i+= 2)");

for(int i=0; i < 4; i+=2)

{

Serial.println(i);
}

That expression only prints the values 0 and 2.
The iterator expression can be used to cause the loop to count from high to low, in this
case from 3 to 0:

Serial.println("for(int i=3; i > = 0 ; i--)");
for(int i=3; i > = 0 ; i--)
{

Serial.println(i);

Like the other parts of a for loop, the iterator expression can be left blank (you must
always have the two semicolons separating the three parts even if they are blank).

This version only increments i when an input pin is high. The for loop does not change
the value of i; it is only changed by the if statement after Serial.print:

Serial.println("for(int i=0; i < 4;)");
for(int i=0; i < 4;)
{
Serial.println(i);
if(digitalRead(inPin) == HIGH);
i++; // only increment the value if the input is high
}

See Also

Arduino reference for the for statement: http://www.arduino.cc/en/Reference/For

2.15 Breaking Out of Loops

Problem

You want to terminate a loop early based on some condition you are testing.

Solution

Use the following code:

while(analogRead(sensorPin) > 100)

2.15 Breaking Out of Loops | 49

http://www.arduino.cc/en/Reference/For

if(digitalRead(switchPin) == HIGH)
break; //exit the loop if the switch is pressed

flashLED(); // call a function to turn an LED on and off
}

Discussion

This code is similar to the one using while loops, but it uses the break statement to exit
the loop if a digital pin goes high. For example, if a switch is connected on the pin as
shown in Recipe 5.1, the loop will be exited and the LED will stop flashing even if the
condition in the while loop is true.

See Also

Arduino reference for the break statement: http://www.arduino.cc/en/Reference/Break

2.16 Taking a Variety of Actions Based on a Single Variable

Problem

You need to do different things depending on some value. You could use multiple if
and else if statements, but the code soon gets complex and difficult to understand or
modify. Additionally, you may want to test for a range of values.

Solution

The switch statement provides for selection of a number of alternatives. It is function-
ally similar to multiple if/else if statements but is more concise:
/*
SwitchCase sketch
example showing switch statement by switching on chars from the serial port

sending the character 1 blinks the LED once, sending 2 blinks twice
sending + turns the LED on, sending - turns it off
any other character prints a message to the Serial Monitor

* K X X X X

*/
const int ledPin = 13; // the pin the LED is connected to

void setup()

{
Serial.begin(9600); // Initialize serial port to send and receive at 9600 baud
pinMode(13, OUTPUT);

void loop()

{

if (Serial.available()) // Check to see if at least one character is available

{

50 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/Break

char ch = Serial.read();

switch(ch)

{

case '1':
blink();
break;

case '2':
blink();
blink();
break;

case '+':
digitalWrite(ledPin,HICH);
break;

case '-':
digitalWrite(ledPin,LOW);
break;

default :
Serial.print(ch);
Serial.println(" was received but not expected");
break;

}

}
}

void blink()
{

digitalWrite(ledPin,HICH);
delay(500);
digitalWrite(ledPin,LOW);
delay(500);

Discussion

The switch statement evaluates the variable ch received from the serial port and
branches to the label that matches its value. The labels must be numeric constants (you
can use strings in a case statement) and no two labels can have the same value. If you
don’t have a break statement following each expression, the execution will fall
through into the statement:

case '1':
blink(); // no break statement before the next label
case '2":
blink(); // case '1' will continue here
blink();
break; // break statement will exit the switch expression

If the break statement at the end of case '1': was removed (as shown in the preceding
code), when ch is equal to the character 1 the blink function will be called three times.
Accidentally forgetting the break is a common mistake. Intentionally leaving out the
break is sometimes handy; it can be confusing to others reading your code, so it’s a
good practice to clearly indicate your intentions with comments in the code.

2.16 Taking a Variety of Actions Based on a Single Variable | 51

If your switch statement is misbehaving, check to ensure that you have
not forgotten the break statements.

The default: label is used to catch values that don’t match any of the case labels. If
there is no default label, the switch expression will not do anything if there is no match.

See Also

Arduino reference for the switch and case statements: http://www.arduino.cc/en/Refer
ence/SwitchCase

2.17 Comparing Character and Numeric Values

Problem

You want to determine the relationship between values.
Solution
Compare integer values using the relational operators shown in Table 2-2.

Table 2-2. Relational and equality operators

Operator Test for Example

== Equal to 2 == 3 // evaluates to false
1= Not equal to 2 1= 3 // evaluates to true
> Greater than 2 > 3 // evaluates to false
< Less than 2 < 3 // evaluates to true
>= Greaterthanorequalto 2 >= 3 // evaluates to false
<= Less than or equal to 2 <= 3 // evaluates to true

The following sketch demonstrates the results of using the comparison operators:
/*

* RelationalExpressions sketch
* demonstrates comparing values

*/

int i = 1; // some values to start with
int j = 2;

void setup() {
Serial.begin(9600);

52 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/SwitchCase
http://www.arduino.cc/en/Reference/SwitchCase

void loop(){
Serial.print("i = ");
Serial.print(i);
Serial.print(" and j = ");
Serial.println(j);

if(i < j)

Serial.println(" i is less than j");
if(i <= j)

Serial.println(" i is less than or equal to j");
if(i 1= j)

Serial.println(" i is not equal to j");
if(i == j)

Serial.println(" i is equal to j");
if(i >= j)

Serial.println(" i is greater than or equal to j");
if(i > j)

Serial.println(" i is greater than j");

Serial.println();
i=1+1;
if(i > j+1)
delay(10000); // long delay after i is no longer close to j
}

Here is the output:

i=1and j=2

i is less than j

i is less than or equal to j
i is not equal to j

i=2and j=2

i is less than or equal to j

i is equal to j

i is greater than or equal to j
i=3andj=2

i is not equal to j

i is greater than or equal to j
i is greater than j

Discussion

Note that the equality operator is the double equals sign, ==. One of the most common
programming mistakes is to confuse this with the assignment operator, which uses a
single equals sign.

The following expression will compare the value of i to 3. The programmer intended
this:

if(i == 3) // test if i equals 3
But he put this in the sketch:

if(i = 3) // single equals sign used by mistake!!!!

2.17 Comparing Character and Numeric Values | 53

This will always return true, because i will be set to 3, so they will be equal when
compared.

A tip to help avoid that trap when comparing variables to constants (fixed values) is to
put the constant on the left side of the expression:

if(3 = 1) // single equals sign used by mistake!!!!

The compiler will tell you about this error because it knows that you can’t assign a
different value to a constant.

B
)

The error message is the somewhat unfriendly “value required as left
operand of assignment”. If you see this message, the compiler is telling
vls you that you are trying to assign a value to something that cannot be
" changed.

See Also

Arduino reference for conditional and comparison operators: http://www.arduino.cc/
en/Reference/If

2.18 Comparing Strings

Problem

You want to see if two character strings are identical.

Solution
There is a function to compare strings, called strcmp (short for string compare). Here
is a fragment showing its use:

char Stringi[] = "left";
char String2[] = "right";

if(stremp(String1, String2) == 0)
Serial.print("strings are equal)

Discussion

stremp returns the value 0 if the strings are equal and a value greater than zero if the
first character that does not match has a greater value in the first string than in the
second. It returns a value less than zero if the first nonmatching character in the first
string is less than in the second. Usually you only want to know if they are equal, and
although the test for zero may seem unintuitive at first, you’ll soon get used to it.

54 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/If
http://www.arduino.cc/en/Reference/If

Bear in mind that strings of unequal length will not be evaluated as equal even if the
shorter string is contained in the longer one. So:

stremp("left", "leftcenter") == 0) // this will evaluate to false

You can compare strings up to a given number of characters by using the strncmp func-
tion. You give strncmp the maximum number of characters to compare and it will stop
comparing after that many characters:

strncmp("left", "leftcenter", 4) == 0) // this will evaluate to true

See Also

More information on strcmp is available at hitp://'www.cplusplus.com/reference/clibrary/
cstring/strempl/.

2.19 Performing Logical Comparisons

Problem

You want to evaluate the logical relationship between two or more expressions. For
example, you want to take a different action depending on the conditions of an if
statement.

Solution

Use the logical operators as outlined in Table 2-3.

Table 2-3. Logical operators

Symbol Function Comments
&8 Logical And Evaluates as true if the condition on both sides of the && operator are true
| Logical Or Evaluates as true if the condition on at least one side of the | | operator is true

! Not Evaluates as true if the expression is false, and false if the expression is true

Discussion
Logical operators return true or false values based on the logical relationship.

The logical And operator 8& will return true if both its two operands are true, and
false otherwise. The logical Or operator | | will return true if either of its two operands
are true, and false if both operands are false. The Not operator ! has only one operand,
whose value is inverted—it results in false if its operand is true and true if its operand
is false.

2.19 Performing Logical Comparisons | 55

http://www.cplusplus.com/reference/clibrary/cstring/strcmp/
http://www.cplusplus.com/reference/clibrary/cstring/strcmp/

2.20 Performing Bitwise Operations

Problem

You want to set or clear certain bits in a value.
Solution
Use the bit operators as outlined in Table 2-4.

Table 2-4. Bit operators

Symbol Function Comment Example
& Bitwise And Sets bitsin each place to 1if both bits are 1; otherwise, 3 & 1equals1
bits are set to 0.

(112 & o1equalso1)
| Bitwise Or Sets bits in each place to 1if either bit s 1. 3 | 1equals3
(11 | o1equals11)

A Bitwise Exclusive Sets bits in each place to 1 only if one of the two bits 3 A 1equals2

or is1. (11 ~ o1equals 10)

~ Bitwise Negation Inverts the value of each bit. The result dependsonthe ~1 equals 254

number of bits in the data type. (00000001 equals 11111110)

Here is a sketch that demonstrates the example values shown in Table 2-4:
/*
* bits sketch
* demonstrates bitwise operators

*/

void setup() {
Serial.begin(9600);

void loop(){
Serial.print("3 & 1 equals "); // bitwise And 3 and 1
Serial.print(3 & 1); // print the result
Serial.print(" decimal, or in binary: ");
Serial.println(3 & 1 , BIN); // print the binary representation of the result

Serial.print("3 | 1 equals "); // bitwise Or 3 and 1

Serial.print(3 | 1);

Serial.print(" decimal, or in binary: ");

Serial.println(3 | 1 , BIN); // print the binary representation of the result

Serial.print("3 ~ 1 equals "); // bitwise exclusive or 3 and 1
Serial.print(3 " 1);

56 | Chapter2: Making the Sketch Do Your Bidding

Serial.print(" decimal, or in binary: ");
Serial.println(3 ~ 1, BIN); // print the binary representation of the result

byte byteVal = 1;

int intval = 1;

byteval = ~byteVal; // do the bitwise negate
intVal = ~intval;

Serial.print("~byteVal (1) equals "); // bitwise negate an 8 bit value
Serial.println(byteval, BIN); // print the binary representation of the result
Serial.print("~intVal (1) equals "); // bitwise negate a 16 bit value
Serial.println(intval, BIN); // print the binary representation of the result

delay(10000);
}

This is what is displayed on the Serial Monitor:

3 & 1 equals 1 decimal, or in binary: 1

3 | 1 equals 3 decimal, or in binary: 11

3 * 1 equals 2 decimal, or in binary: 10

~byteVal (1) equals 11111110

~intval (1) equals 11111111111111111111111111111110

Discussion

Bitwise operators are used to set or test bits. When you “And” or “Or” two values, the
operator works on each individual bit. It is easier to see how this works by looking at
the binary representation of the values.

Decimal 3 is binary 00000011, and decimal 1 is 00000001. Bitwise And operates on
each bit. The rightmost bits are both 1, so the result of And-ing these is 1. Moving to
the left, the next bits are 1 and 0; And-ing these results in 0. All the remaining bits are
0, so the bitwise result of these will be 0. In other words, for each bit position where
there is a 1 in both places, the result will have a 1; otherwise, it will have a 0. So, 11 &
01 equals 1.

Tables 2-5, 2-6, and 2-7 should help to clarify the bitwise And, Or, and Exclusive Or
values.

Table 2-5. Bitwise And

Bit 1 Bit2 Bit 1and Bit 2
0 0 0
0 1 0
1 0 0
1 1 1

2.20 Performing Bitwise Operations | 57

Table 2-6. Bitwise Or

Bit 1 Bit2 Bit 1 or Bit 2
0 0 0
0 1 1
1 0 1
1 1 1

Table 2-7. Bitwise Exclusive Or
Bit 1 Bit 2 Bit 1 A Bit 2
0 0 0
0 1 1
1 0 1
1 1 0

All the bitwise expressions operate on two values, except for the negation operator.
This simply flips each bit, so 0 becomes 1 and 1 becomes 0. In the example, the byte
(8-bit) value 00000001 becomes 11111110. The int value has 16 bits, so when each is
flipped, the result is 15 ones followed by a single zero.

See Also

Arduino reference for the bitwise And, Or, and Exclusive Or operators: http://www
.arduino.cc/en/Reference/Bitwise

2.21 Combining Operations and Assignment

Problem

You want to understand and use compound operators. It is not uncommon to see
published code that uses expressions that do more than one thing in a single statement.
You want to understand a += b, a >>= b, and a &= b.

Solution

Table 2-8 shows the compound assignment operators and their equivalent full
expression.

58 | Chapter2: Making the Sketch Do Your Bidding

http://www.arduino.cc/en/Reference/Bitwise
http://www.arduino.cc/en/Reference/Bitwise

Table 2-8. Compound operators

Operator Example

Equivalent expression

Value
Value
Value
Value
Value
Value
Mask

Mask

Value + 5; // add 5 to Value

// subtract 4 from Value
// multiply Value by 3
// divide Value by 2

- 4;

/2;

>> 2; // shift Value right two places
<< 2; // shift Value left two places
2; // binary and Mask with 2
2; // binary or Mask with 2

+= Value += 5;
-= Value -= 4;
*= Value *= 3;
/= Value /= 2;
>>= Value >>= 2;
<<= Value <<= 2;
&= Mask &= 2;
|= Mask |= 2;
Discussion

These compound statements are no more efficient at runtime than the equivalent full
expression, and if you are new to programming, using the full expression is clearer.
Experienced coders often use the shorter form, so it is helpful to be able to recognize

the expressions when you run across them.

See Also

See http://www.arduino.cc/en/Reference/HomePage for an index to the reference pages

for compound operators.

2.21 Combining Operations and Assignment | 59

http://www.arduino.cc/en/Reference/HomePage

CHAPTER 3
Using Mathematical Operators

3.0 Introduction

Almost every sketch uses mathematical operators to manipulate the value of variables.
This chapter provides a brief overview of the most common mathematical operators.
As the preceding chapter is, this summary is primarily for nonprogrammers or pro-
grammers who are not familiar with C or C++. For more details, see one of the
C reference books mentioned in the Preface.

3.1 Adding, Subtracting, Multiplying, and Dividing

Problem

You want to perform simple math on values in your sketch. You want to control the
order in which the operations are performed and you may need to handle different
variable types.

Solution

Use the following code:

int myValue;

myValue = 1 + 2; // addition

myValue = 3 - 2; // subtraction

myValue = 3 * 2; // multiplication

myValue = 3 / 2; // division (the result is 1)

Discussion

Addition, subtraction, and multiplication for integers work much as you expect.

61

Make sure your result will not exceed the maximum size of the desti-
nation variable. See Recipe 2.2.

Integer division truncates the fractional remainder in the division example shown in
this recipe’s Solution; myValue will equal 1 after the division (see Recipe 2.3 if your
application requires fractional results):

int value = 1+ 2 * 3 + 4;

Compound statements, such as the preceding statement, may appear ambiguous, but
the precedence (order) of every operator is well defined. Multiplication and division
have a higher precedence than addition and subtraction, so the result will be 11. It’s
advisable to use brackets in your code to make the desired calculation precedence clear.
int value = 1 + (2 * 3) + 4; produces the same result but is easier to read.

Use parentheses if you need to alter the precedence, as in this example:
int value = ((1 + 2) * 3) + 4;

The result will be 13. The expression in the inner parentheses is calculated first, so 1
gets added to 2, this then gets multiplied by 3, and finally is added to 4, yielding 13.

See Also
Recipe 2.2; Recipe 2.3

3.2 Incrementing and Decrementing Values

Problem

You want to increase or decrease the value of a variable.

Solution
Use the following code:
int myValue = 0;

myValue = myvalue + 1; // this adds one to the variable myValue
myValue += 1; // this does the same as the above

myValue = myvalue - 1; // this subtracts one from the variable myValue
myValue -= 1; // this does the same as the above

myValue = myvalue + 5; // this adds five to the variable myValue
myValue += 5; // this does the same as the above

62 | Chapter3: Using Mathematical Operators

Discussion

Increasing and decreasing the values of variables is one of the most common program-
ming tasks, and the Arduino board has operators to make this easy. Increasing a value
by one is called incrementing, and decreasing it by one is called decrementing. The
longhand way to do this is as follows:

myValue = myvalue + 1; // this adds one to the variable myValue

But you can also combine the increment and decrement operators with the assign op-
erator, like this:

myValue += 1; // this does the same as the above

See Also
Recipe 3.1

3.3 Finding the Remainder After Dividing Two Values

Problem

You want to find the remainder after you divide two values.

Solution

Use the % symbol (the modulus operator) to get the remainder:

int myValueO
int myValue1

20 % 10; // get the modulus(remainder) of 20 divided by 10
21 % 10; // get the modulus(remainder) of 21 divided by 10

myValueo equals 0 (20 divided by 10 has a remainder of 0). myValuel equals 1 (21 divided
by 10 has a remainder of 1).

Discussion

The modulus operator is surprisingly useful, particularly when you want to see if a
value is evenly divisible by a number. For example, the code in this recipe’s Solution
can be enhanced to detect when a value is a multiple of 10:

int myValue;

//... code here to set the value of myValue
if(myvValue % 10 == 0)

Serial.println("The value is a multiple of 10";

}

The preceding code takes the modulus of the myValue variable and compares the result
to zero (see Recipe 2.17). If it is zero, a message is printed saying the result is divisible
by 10.

3.3 Finding the Remainder After Dividing Two Values | 63

Here is a similar example, but by using 2 with the modulus operator, the result can be
used to check if a value is odd or even:
int myValue;

//... code here to set the value of myValue
if(myValue % 2 == 0)

Serial.println("The value is even";

}

else

{

Serial.println("The value is odd";

}

This example tracks the day of the week from a variable that is incremented (by other
code) each day and reports when it is the first day of the week:

int dayCount;

int day = dayCount % 7;

if(day == 0)
{
Serial.println("This is the first day of the week");
}
See Also

Arduino reference for % (the modulus operator): hitp://www.arduino.cc/en/Reference/
Modulo

3.4 Determining the Absolute Value

Problem

You want to get the absolute value of a number.

Solution

abs(x) computes the absolute value of x. The following example takes the absolute
value of the difference between readings on two analog input ports (see Chapter 5 for
more on analogRead()):

int x
inty

= analogRead(0);
= analogRead(1);

if(abs(x-y) > 10)
{

Serial.println("The analog values differ by more than 10");

}

64 | Chapter3: Using Mathematical Operators

http://www.arduino.cc/en/Reference/Modulo
http://www.arduino.cc/en/Reference/Modulo

Discussion

abs(x-y); returns the absolute value of the difference between x and y. It is used for
integer (and long integer) values. To return the absolute value of floating-point values,
see Recipe 2.3.

See Also

Arduino reference for abs: http://www.arduino.cc/en/Reference/Abs

3.5 Constraining a Number to a Range of Values

Problem

You want to ensure that a value is always within some lower and upper limit.

Solution

constrain(x, min, max) returns a value that is within the bounds of min and max:

myConstrainedValue = constrain(myValue, 100, 200);

Discussion

myConstrainedValue is set to a value that will always be greater than or equal to 100 and
less than or equal to 200. If myValue is less than 100, the result will be 100; if it is more
than 200, it will be set to 200.

Table 3-1 shows some example output values using a min of 100 and a max of 200.

Table 3-1. Output from constrain with min = 100 and max = 200

myValue (the input value) constrain(myValue, 100, 200)
99 100
100 100
150 150
200 200
201 200
See Also
Recipe 3.6

3.5 Constraining a Number to a Range of Values | 65

http://www.arduino.cc/en/Reference/Abs

3.6 Finding the Minimum or Maximum of Some Values

Problem

You want to find the minimum or maximum of two or more values.

Solution

min(x,y) returns the smaller of two numbers. max(x,y) returns the larger of two
numbers.

myValue = analogRead(0);
myMinValue = min(myValue, 200); // myMinValue will be the smaller of
// myval or 200

myMaxValue = max(myValue, 100); // myMaxValue will be the larger of
// myval or 100

Discussion

Table 3-2 shows some example output values using a min of 200. The table shows that
the output is the same as the input (myValue) until the value becomes greater than 200.

Table 3-2. Output from min(myValue, 200)

myValue (theinputvalue) Min(myValue, 200)

99 99

100 100
150 150
200 200
201 200

Table 3-3 shows the output using a max of 100. The table shows that the output is the
same as the input (myValue) when the value is greater than or equal to 100.

Table 3-3. Output from max(myValue, 100)

myValue (the inputvalue) Max(myValue, 200)

99 100
100 100
150 150
200 200
201 201

66 | Chapter3: Using Mathematical Operators

Use min when you want to limit the upper bound. That may be counterintuitive, but
by returning the smaller of the input value and the minimum value, the output from
min will never be higher than the minimum value (200 in the example).

Similarly, use max to limit the lower bound. The output from max will never be lower
than the maximum value (100 in the example).

If you want to find the min or max value from more than two values, you can cascade
the values as follows:

// myMinvalue will be the smaller of the three analog readings:
int myMinValue = min(analogRead(0), min(analogRead(1), analogRead(2)));

In this example, the minimum value is found for analog ports 1 and 2, and then the
minimum of that and port 0. This can be extended for as many items as you need, but
take care to position the parentheses correctly. The following example gets the maxi-
mum of four values:

int myMaxValue = max(analogRead(0), max(analogRead(1), max(analogRead(2),
analogRead(3))));

See Also
Recipe 3.5

3.7 Raising a Number to a Power

Problem

You want to raise a number to a power.

Solution

pow(x, y) returns the value of x raised to the power of y:

myValue = pow(3,2);

This calculates 32, so myValue will equal 9.

Discussion

The pow function can operate on integer or floating-point values and it returns the result
as a floating-point value:

Serial.print(pow(3,2)); // this prints 9.00

int z = pow(3,2);

Serial.println(z); // this prints 9
The first output is 9.00 and the second is 9; they are not exactly the same because the
first print displays the output as a floating-point number and the second treats the
value as an integer before printing, and therefore displays without the decimal point.

3.7 Raising a Number toa Power | 67

If you use the pow function, you may want to read Recipe 2.3 to understand the differ-
ence between these and integer values.

Here is an example of raising a number to a fractional power:
float s = pow(2, 1.0 / 12); // the twelfth root of two

The twelfth root of two is the same as 2 to the power of 0.083333. The resultant value,
s, is 1.05946 (this is the ratio of the frequency of two adjacent notes on a piano).

3.8 Taking the Square Root

Problem

You want to calculate the square root of a number.

Solution

The sqrt(x) function returns the square root of x:
Serial.print(sqrt(9)); // this prints 3.00

Discussion

The sqrt function returns a floating-point number (see the pow function discussed in
Recipe 3.7).

3.9 Rounding Floating-Point Numbers Up and Down

Problem

You want the next smallest or largest integer value of a floating-point number (floor
or ceil).

Solution

floor(x) returns the largest integral value that is not greater than x. ceil(x) returns the
smallest integral value that is not less than x.

Discussion

These functions are used for rounding floating-point numbers; use floor to round down
and ceil to round up.

Here is some example output using floor:

Serial.println(floor(1)); // this prints 1.00
Serial.println(floor(1.1)); // this prints 1.00
Serial.println(floor(0)); // this prints 0.00

68 | Chapter3: Using Mathematical Operators

Serial.println(floor(.1)); // this
Serial.println(floor(-1)); // this
Serial.println(floor(-1.1)); // this

Here is some example output using ceil:

Serial.println(ceil(1)); // this
Serial.println(ceil(1.1)); // this
Serial.println(ceil(o)); // this
Serial.println(ceil(.1)); // this
Serial.println(ceil(-1)); // this
Serial.println(ceil(-1.1)); // this

B
)

prints
prints
prints

prints
prints
prints
prints
prints
prints

P PR ONR

.00
-1.
-2.

00
00

.00
.00
.00
.00
.00
.00

You can truncate a floating-point number by casting (converting) to an
int, but this does not round correctly. Negative numbers such as -1.9

vis should round down to -2, but when cast to an int they are rounded up

" to-1. The same problem exists with positive numbers: 1.9 should round
up to 2 but will round down to 1. Use floor and ceil to get the correct

results.

3.10 Using Trigonometric Functions

Problem

You want to get the sine, cosine, or tangent of an angle given in radians or degrees.

Solution

sin(x) returns the sine of angle x. cos(x) returns the cosine of angle x. tan(x) returns
the tangent of angle x.

Discussion

Angles are specified in radians and the result is a floating-point number (see Rec-
ipe 2.3). The following example illustrates the trig functions:

float deg = 30;

// angle in degrees

float rad = deg * PI / 180; // convert to radians

Serial.println(rad);
Serial.println sin(rad));
Serial.println (cos(rad));

// print the radians
// print the sine
// print the cosine

This converts the angle into radians and prints the sine and cosine. Here is the output
with annotation added:

0.52
0.50
0.87

30 degrees is 0.5235988 radians, print only shows two decimal places
sine of 30 degrees is .5000000, displayed here to two decimal places
cosine is .8660254, which rounds up to 0.87

3.10 Using Trigonometric Functions | 69

Although the sketch calculates these values using the full precision of floating-point
numbers, the Serial.print routine shows the values of floating-point numbers to two
decimal places.

The conversion from radians to degrees and back again is textbook trigonometry. PI is
the familiar constant for (3.14159265...). PI and 180 are both constants, and Arduino
provides some precalculated constants you can use to perform degree/radian
conversions:

rad
deg

deg * DEG TO RAD; // a way to convert degrees to radians
rad * RAD TO DEG; // a way to convert radians to degrees

Using deg * DEG_TO_RAD looks more efficient than deg * PI / 180, but it’s not, since
the Arduino compiler is smart enough to recognize that PI / 180is a constant (the value
will never change), so it substitutes the result of dividing PI by 180, which happens to
be the value of the constant (DEG_TO RAD is 0.017453292519...). So, you can use which-
ever approach you prefer.

See Also

Arduino references for sin (hitp://'www.arduino.cc/en/Reference/Sin), cos (http://ardui
no.cclen/Reference/Cos), and tan (http://arduino.cc/en/Reference/Tan)

3.11 Generating Random Numbers

Problem

You want to get a random number, either ranging from zero up to a specified maximum
or constrained between a minimum and maximum value you provide.

Solution

Use the random function to return a random number. Calling random with a single pa-
rameter sets the upper bound; the values returned will range from zero to one less than
the upper bound:

random(max) ; // returns a random number between 0 and max -1
Calling random with two parameters sets the lower and upper bounds; the values re-
turned will range from the lower bound (inclusive) to one less than the upper bound:

random(min, max); // returns a random number between min and max -1

Discussion

Although there appears to be no obvious pattern to the numbers returned, the values
are not truly random. Exactly the same sequence will repeat each time the sketch starts.
In many applications, this does not matter. But if you need a different sequence each
time your sketch starts, use the function randomSeed(seed) with a different seed value

70 | Chapter3: Using Mathematical Operators

http://www.arduino.cc/en/Reference/Sin
http://arduino.cc/en/Reference/Cos
http://arduino.cc/en/Reference/Cos
http://arduino.cc/en/Reference/Tan

each time (if you use the same seed value, you’ll get the same sequence). This function
starts the random number generator at some arbitrary place based on the seed param-
eter you pass:

randomSeed(1234); // change the starting sequence of random numbers.

Here is an example that uses the different forms of random number generation available
on Arduino:

// Random
// demonstrates generating random numbers

int randNumber;
void setup()
{
Serial.begin(9600);

// Print random numbers with no seed value
Serial.println("Print 20 random numbers between 0 and 9");
for(int i=0; i < 20; i++)
{

randNumber = random(10);

Serial.print(randNumber);

Serial.print(" ");

Serial.println();
Serial.println("Print 20 random numbers between 2 and 9");
for(int i=0; i < 20; i++)
{
randNumber = random(2,10);
Serial.print(randNumber);
Serial.print(" ");
}

// Print random numbers with the same seed value each time

randomSeed(1234);

Serial.println();

Serial.println("Print 20 random numbers between 0 and 9 after constant seed ");
for(int i=0; i < 20; i++)

randNumber = random(10);
Serial.print(randNumber);
Serial.print(" ");

// Print random numbers with a different seed value each time
randomSeed(analogRead(0)); // read from an analog port with nothing connected
Serial.println();
Serial.println("Print 20 random numbers between 0 and 9 after floating seed ");
for(int i=0; i < 20; i++)
{

randNumber = random(10);

Serial.print(randNumber);

Serial.print(" ");

3.11 Generating Random Numbers | 71

Serial.println();
Serial.println();

}

void loop()
}

Here is the output from this code:

and
90

Print 20 random numbers between 0
79380248390522737
Print 20 random numbers between 2 and
9377275829342543575
Print 20 random numbers between 0 and 9 after constant seed
8287180365903431239
Print 20 random numbers between 0 and
5

0974477449160231591

after floating seed

P WO OWNONY

If you press the reset button on your Arduino to restart the sketch, the first three lines
of random numbers will be unchanged. Only the last line changes each time the sketch
starts, because it sets the seed to a different value by reading it from an unconnected
analog input port as a seed to the randomSeed function. If you are using analog port 0
for something else, change the argument to analogRead to an unused analog port.

See Also

Arduino references for random (http://www.arduino.cc/en/Reference/Random) and
randomSeed (http://arduino.cc/en/Reference/RandomSeed)

3.12 Setting and Reading Bits

Problem

You want to read or set a particular bit in a numeric variable.

Solution
Use the following functions:

* bitSet(x, bitPosition) sets (writes a 1 to) the given bitPosition of variable x.

* bitClear(x, bitPosition) clears (writes a0 to) the given bitPosition of variable x.

* bitRead(x, bitPosition) returns the value (as 0 or 1) of the bit at the given
bitPosition of variable x.

* bitWrite(x, bitPosition, value) sets the given value (as 0 or 1) of the bit at the
given bitPosition of variable x.

* bit(bitPosition) returns the value of the given bit position: bit(0) is 1, bit(1) is
2,bit(2) is 4, and so on.

72 | Chapter3: Using Mathematical Operators

http://www.arduino.cc/en/Reference/Random
http://arduino.cc/en/Reference/RandomSeed

In all these functions, bitPosition 0 is the least significant (rightmost) bit.

Here is a sketch that uses these functions to manipulate the bits of an 8-bit variable
called flags:

// bitFunctions
// demonstrates using the bit functions

byte flags = 0; // these examples set, clear or read bits in a variable called flags.

// bitSet example
void setFlag(int flagNumber)

bitSet(flags, flagNumber);
}

// bitClear example
void clearFlag(int flagNumber)

bitClear(flags, flagNumber);
}

// bitPosition example
int getFlag(int flagNumber)

return bitRead(flags, flagNumber);
}

void setup()
{

Serial.begin(9600);

void loop()
{

showFlags();

setfFlag(2); // set some flags;
setFlag(s);

showFlags();

clearFlag(2);

showFlags();

delay(10000); // wait a very long time

}

// reports flags that are set
void showFlags()
{

for(int flag=0; flag < 8; flag++)

if(getFlag(flag) == true)
Serial.print("* bit set for flag ");

3.12 Setting and Reading Bits | 73

else
Serial.print("bit clear for flag ");

Serial.println(flag);
}
Serial.println();

}

This code will print the following:

bit clear for flag o
bit clear for flag 1
bit clear for flag 2
bit clear for flag 3
bit clear for flag
bit clear for flag
bit clear for flag
bit clear for flag

~N o v b~

bit clear for flag
bit clear for flag
* bit set for flag
bit clear for flag
bit clear for flag
* bit set for flag
bit clear for flag
bit clear for flag

~Nouvih, WwWN RO

bit clear for flag o
bit clear for flag 1
bit clear for flag 2
bit clear for flag 3
bit clear for flag 4
* bit set for flag 5
bit clear for flag 6
bit clear for flag 7

Discussion

Reading and setting bits is a common task, and many of the Arduino libraries use this
functionality. One of the more common uses of bit operations is to efficiently store and
retrieve binary values (on/off, true/false, 1/0, high/low, etc.).

Arduino defines the constants true and HIGH as 1 and false and LOW as 0.

The state of eight switches can be packed into a single 8-bit value instead of requiring
eight bytes or integers. The example in this recipe’s Solution shows how eight values
can be individually set or cleared in a single byte.

74 | Chapter3: Using Mathematical Operators

The term flag is a programming term for values that store the state of some aspect of a
program. In this sketch, the flag bits are read using bitRead, and they are set or cleared
using bitSet or bitClear. These functions take two parameters: the first is the value to
read or write (flags in this example), and the second is the bit position indicating where
the read or write should take place. Bit position 0 is the least significant (rightmost) bit;
position 1 is the second position from the right, and so on. So:

bitRead(2, 1); // returns 1 because 2 is binary 10 and the bit in position 1

is 1

bitRead(4, 1); // returns 0 because 4 is binary 100 and the bit in position 1

is 0
There is also a function called bit that returns the value of each bit position:

bit(0) is equal to 1;
bit(1) is equal to 2;
bit(2) is equql to 4;

bit(7) is equal to 128

See Also

Arduino references for bit and byte functions:

lowByte
http://www.arduino.cc/en/Reference/LowByte

highByte
http://arduino.cc/en/Reference/HighByte

bitRead
http://www.arduino.cc/en/Reference/BitRead

bitWrite
http://arduino.cc/en/Reference/BitWrite

bitSet
http://arduino.cc/en/Reference/BitSet

bitClear
http://arduino.cc/en/Reference/BitClear

bit
http://arduino.cc/en/Reference/Bit

3.13 Shifting Bits

Problem

You need to perform bit operations that shift bits left or right in a byte, int, or long.

3.13 Shifting Bits | 75

http://www.arduino.cc/en/Reference/LowByte
http://arduino.cc/en/Reference/HighByte
http://www.arduino.cc/en/Reference/BitRead
http://arduino.cc/en/Reference/BitWrite
http://arduino.cc/en/Reference/BitSet
http://arduino.cc/en/Reference/BitClear
http://arduino.cc/en/Reference/Bit

Solution

Use the << (bit-shift left) and >> (bit-shift right) operators to shift the bits of a value.

Discussion

This fragment sets variable x equal to 6. It shifts the bits left by one and prints the new
value (12). Then that value is shifted right two places (and in this example becomes
equal to 3):

int x = 6;

int result = x << 1; // 6 shifted left 1 is 12

Serial.println(result);

int result = x > 2; // 12 shifted right 2 is 3;
Serial.println(result);

Here is how this works: 6 shifted left one place equals 12, because the decimal number
6 is 0110 in binary. When the digits are shifted left, the value becomes 1100 (decimal
12). Shifting 1100 right two places becomes 0011 (decimal 3). You may notice that
shifting a number left by n places is the same as multiplying the value by 2 raised to the
power of n. Shifting a number right by n places is the same as dividing the value by 2
raised to the power of n. In other words, the following pairs of expressions are the same:

¢ x << 1isthesameasx * 2.

* x << 2isthesameasx * 4.

¢ x << 3isthesameasx * 8.

e x > 1isthesameasx / 2.

¢ x > 2isthesameasx / 4.

* x > 3isthesameasx / 8.
The Arduino controller chip can shift bits more efficiently than it can multiply and
divide, and you may come across code that uses the bit shift to multiply and divide:

int ¢ = (a << 1) + (b >> 2); //add (a times 2) plus (b divided by 4)

The expression (a << 1) + (b >> 2); does notlook much like (a * 2) + (b / 4);, but
both expressions do the same thing. Indeed, the Arduino compiler is smart enough to
recognize that shifting an integer by a constant that is a power of two is identical to a
shift and will produce the same machine code as the version using shift. The source

code using arithmetic operators is easier for humans to read, so it is preferred when the
intent is to multiply and divide.

See Also

Arduino references for bit and byte functions: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear, and bit (see Recipe 3.12)

76 | Chapter3: Using Mathematical Operators

3.14 Extracting High and Low Bytes in an int or long

Problem

You want to extract the high byte or low byte of an integer; for example, when sending
integer values as bytes on a serial or other communication line.

Solution

Use lowByte(i) to get the least significant byte from an integer. Use highByte(i) to get
the most significant byte from an integer.

The following sketch converts an integer value into low and high bytes:

//ByteOperators

int intValue = 258; // 258 in hexadecimal notation is 0x102

void setup()

Serial.begin(9600);
}

void loop()

{
int loWord,hiWord;
byte loByte, hiByte;

hiByte
loByte

highByte(intValue);
lowByte(intValue);

Serial.println(intValue,DEC);
Serial.println(intValue,HEX);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

delay(10000); // wait a very long time

}
Discussion
The example sketch prints intValue followed by the low byte and high byte:
258 // the integer value to be converted
102 // the value in hexadecimal notation
2 // the low byte
1 // the high byte

To extract the byte values from a long, the 32-bit long value first gets broken into two
16-bit words which can then be converted into bytes as shown in the earlier code. At
the time of this writing, the standard Arduino library did not have a function to perform

3.14 Extracting High and Low Bytesinanintorlong | 77

this operation on a long, but you can add the following lines to your sketch to provide
this:

#define highWord(w) ((w) >> 16)
#tdefine lowWord(w) ((w) & oxffff)

These are macro expressions: hiWord performs a 16-bit shift operation to produce a 16-
bit value, and lowWord masks the lower 16 bits using the bitwise And operator (see
Recipe 2.20).

W

- The number of bits in an int varies on different platforms. On Arduino
ﬁ:\ it is 16 bits, but in other environments it is 32 bits. The term word as
T Qs used here refers to a 16-bit value.

This code converts the 32-bit hex value 0x1020304 to its 16-bit constituent high and
low values:

loword = lowWord(longValue);
hiword = highWord(longValue);
Serial.println(loword,DEC);
Serial.println(hiword,DEC);

This prints the following values:

772 // 772 is 0x0304 in hexadecimal
258 // 258 is 0x0102 in hexadecimal

Note that 772 in decimal is 0x0304 in hexadecimal, which is the low-order word (16
bits) of the longValue 0x1020304. You may recognize 258 from the first part of this recipe
as the value produced by combining a high byte of 1 and a low byte of 2 (0x0102 in
hexadecimal).

See Also

Arduino references for bit and byte functions: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear, and bit (see Recipe 3.12)

3.15 Forming an int or long from High and Low Bytes

Problem

You want to create a 16-bit (int) or 32-bit (long) integer value from individual bytes;
for example, when receiving integers as individual bytes over a serial communication
link. This is the inverse operation of Recipe 3.14.

78 | Chapter3: Using Mathematical Operators

Solution

Use the word(h,1) function to convert two bytes into a single Arduino integer. Here is
the code from Recipe 3.14 expanded to convert the individual high and low bytes back
into an integer:

//ByteOperators

int intvalue = 0x102; // 258

void setup()
{

Serial.begin(9600);

void loop()

int loWord,hiWord;
byte loByte, hiByte;

hiByte = highByte(intValue);
loByte = lowByte(intValue);

Serial.println(intValue,DEC);
Serial.println(loByte,DEC);
Serial.println(hiByte,DEC);

loWord = word(hiByte, loByte); // convert the bytes back into a word
Serial.println(loWord,DEC);
delay(10000); // wait a very long time

}

Discussion

The word(high, low) expression assembles a high and low byte into a 16-bit value. The
code in this recipe’s Solution takes the low and high bytes formed as shown in Rec-
ipe 3.14, and assembles them back into a word. The output is the integer value, the
low byte, the high byte, and the bytes converted back to an integer value:

258

2

1
258

Arduino does not have a function to make a 32-bit long value two 16-bit words (at the
time of this writing), but you can add your own makeLong() capability by adding the
following line to the top of your sketch:

#tdefine makeLong(hi, low) ((hi) << 16 & (low))

3.15 Forming an int or long from High and Low Bytes | 79

This defines a command that will shift the high value 16 bits to the left and add it to
the low value:

#tdefine makeLong(hi, low) (((long) hi) << 16 | (low))
#define highWord(w) ((w) >> 16)
#tdefine lowWord(w) ((w) & oxffff)

// declare a value to test
long longValue = 0x1020304; // in decimal: 16909060
// in binary : 00000001 00000010 00000011 00000100

void setup()

Serial.begin(9600);
}

void loop()
{
int loWord,hiWord;

Serial.println(longValue,DEC); // this prints 16909060

loWord = lowWord(longValue); // convert long to two words

hiWord = highWord(longValue);

Serial.println(loWord,DEC); // print the value 772
Serial.println(hiWord,DEC); // print the value 258

longValue = makelong(hiWord, loWord); // convert the words back to a long
Serial.println(longValue,DEC); // this again prints 16909060

delay(10000); // wait a very long time
}

The output is:

16909060
772
258
16909060

See Also

Arduino references for bit and byte functions: lowByte, highByte, bitRead, bitWrite,
bitSet, bitClear, and bit (see Recipe 3.12)

80 | Chapter3: Using Mathematical Operators

CHAPTER 4
Serial Communications

4,0 Introduction

Serial communications provide an easy and flexible way for your Arduino board to
interact with your computer and other devices. This chapter explains how to send and
receive information using this capability.

Chapter 1 described how to connect the Arduino serial port to your computer to upload
sketches. The upload process sends data from your computer to Arduino and Arduino
sends status messages back to the computer to confirm the transfer is working. The
recipes here show how you can use this communication link to send and receive any
information between Arduino and your computer or another serial device.

W N

Serial communications are also a handy tool for debugging. You can
send debug messages from Arduino to the computer and display them
915 on your computer screen.

The Arduino IDE (described in Recipe 1.3) provides a Serial Monitor (shown in Fig-
ure 4-1) to display serial data received by Arduino.

You can also send data from the Serial Monitor to Arduino by entering text in the text
box to the left of the Send button. Baud rate is selected using the drop-down box on
the bottom right. You can use the drop down labeled “No line ending” to automatically
send a carriage return or a combination of a carriage return and a line at the end of each
message sent when clicking the Send button.

Your Arduino sketch can use the serial port to indirectly access (usually via a proxy
program written in a language like Processing) all the resources (memory, screen, key-
board, mouse, network connectivity, etc.) that your computer has. Your computer can
also use the serial link to interact with sensors or other devices connected to Arduino.

Implementing serial communications involves hardware and software. The hardware
provides the electrical signaling between Arduino and the device it is talking to. The

81

Moline ending - | [9500baud |

Figure 4-1. Arduino Serial Monitor screen

software uses the hardware to send bytes or bits that the connected hardware under-
stands. The Arduino serial libraries insulate you from most of the hardware complexity,
but it is helpful for you to understand the basics, especially if you need to troubleshoot
any difficulties with serial communications in your projects.

Serial Hardware

Serial hardware sends and receives data as electrical pulses that represent sequential
bits. The zeros and ones that carry the information that makes up a byte can be repre-
sented in various ways. The scheme used by Arduino is 0 volts to represent a bit value
of 0, and 5 volts (or 3.3 volts) to represent a bit value of 1.

W N

Using 0 volts (for 0) and 5 volts (for 1) is very common. This is referred
to as the TTL level because that was how signals were represented in
s one of the first implementations of digital logic, called Transistor-
Transistor Logic (TTL).

Boards including the Uno, Duemilanove, Diecimila, Nano, and Mega have a chip to
convert the hardware serial port on the Arduino chip to Universal Serial Bus (USB) for
connection to the hardware serial port. Other boards, such as the Mini, Pro, Pro Mini,
Boarduino, Sanguino, and Modern Device Bare Bones Board, do not have USB support
and require an adapter for connecting to your computer that converts TTL to USB. See
http://www.arduino.cc/en/Main/Hardware for more details on these boards.

82 | Chapter4: Serial Communications

http://www.arduino.cc/en/Main/Hardware

Some popular USB adapters include:

* Mini USB Adapter (http://arduino.cc/en/Main/MiniUSB)
e FTDIUSB TTL Adapter (http://www.ftdichip.com/Products/FT232R.htm)
* Modern Device USB BUB board (http://shop.moderndevice.com/products/usb-bub)

Some serial devices use the RS-232 standard for serial connection. These usually have
a nine-pin connector, and an adapter is required to use them with the Arduino. RS-232
is an old and venerated communications protocol that uses voltage levels not compat-
ible with Arduino digital pins.

You can buy Arduino boards that are built for RS-232 signal levels, such as the Free-
duino Serial v2.0 (http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-ardui
no-diecimila-compatib20.html).

RS-232 adapters that connect RS-232 signals to Arduino 5V (or 3.3V) pins include the
following;:

* RS-232 to TTL 3V-5.5V adapter (hitp://www.nkcelectronics.com/rs232-to-ttl-con
verter-board-33v232335.html)

* P4 RS232 to TTL Serial Adapter Kits (http://shop.moderndevice.com/products/p4)

e RS232 Shifter SMD (http://www.sparkfun.com/commerce/product_info.php?prod
ucts_id=449)

A standard Arduino has a single hardware serial port, but serial communication is also
possible using software libraries to emulate additional ports (communication channels)
to provide connectivity to more than one device. Software serial requires a lot of help
from the Arduino controller to send and receive data, so it’s not as fast or efficient as
hardware serial.

The Arduino Mega has four hardware serial ports that can communicate with up to
four different serial devices. Only one of these has a USB adapter built in (you could
wire a USB-TTL adapter to any of the other serial ports). Table 4-1 shows the port
names and pins used for all of the Mega serial ports.

Table 4-1. Arduino Mega serial ports

Portname Transmitpin Receive pin

Serial 1 (also USB) 0 (also USB)
Seriall 18 19
Serial2 16 17
Serial3 14 15

4.0 Introduction | 83

http://arduino.cc/en/Main/MiniUSB
http://www.ftdichip.com/Products/FT232R.htm
http://shop.moderndevice.com/products/usb-bub
http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-arduino-diecimila-compatib20.html
http://www.nkcelectronics.com/freeduino-serial-v20-board-kit-arduino-diecimila-compatib20.html
http://www.nkcelectronics.com/rs232-to-ttl-converter-board-33v232335.html
http://www.nkcelectronics.com/rs232-to-ttl-converter-board-33v232335.html
http://shop.moderndevice.com/products/p4
http://www.sparkfun.com/commerce/product_info.php?products_id=449
http://www.sparkfun.com/commerce/product_info.php?products_id=449

Software Serial

You will usually use the built-in Arduino serial library to communicate with the hard-
ware serial ports. Serial libraries simplify the use of the serial ports by insulating you
from hardware complexities.

Sometimes you need more serial ports than the number of hardware serial ports avail-
able. If this is the case, you can use an additional library that uses software to emulate
serial hardware. Recipes 4.13 and 4.14 show how to use a software serial library to
communicate with multiple devices.

Serial Message Protocol

The hardware or software serial libraries handle sending and receiving information.
This information often consists of groups of variables that need to be sent together. For
the information to be interpreted correctly, the receiving side needs to recognize where
each message begins and ends. Meaningful serial communication, or any kind of
machine-to-machine communication, can only be achieved if the sending and receiving
sides fully agree how information is organized in the message. The formal organization
of information in a message and the range of appropriate responses to requests is called
a communications protocol.

Messages can contain one or more special characters that identify the start of the mes-
sage—this is called the header. One or more characters can also be used to identify the
end of a message—this is called the footer. The recipes in this chapter show examples
of messages in which the values that make up the body of a message can be sent in
either text or binary format.

Sending and receiving messages in text format involves sending commands and nu-
meric values as human-readable letters and words. Numbers are sent as the string of
digits that represent the value. For example, if the value is 1234, the characters 1, 2, 3,
and 4 are sent as individual characters.

Binary messages comprise the bytes that the computer uses to represent values. Binary
data is usually more efficient (requiring fewer bytes to be sent), but the data is not as
human-readable as text, which makes it more difficult to debug. For example, Arduino
represents 1234 as the bytes 4 and 210 (4 * 256 + 210 = 1234). If the device you are
connecting to sends or receives only binary data, that is what you will have to use, but
if you have the choice, text messages are easier to implement and debug.

84 | Chapter4: Serial Communications

There are many ways to approach software problems, and some of the recipes in this
chapter show two or three different ways to achieve a similar result. The differences
(e.g., sending text instead of raw binary data) may offer a different balance between
simplicity and efficiency. Where choices are offered, pick the solution that you find
easiest to understand and adapt—this will probably be the first solution covered. Al-
ternatives may be a little more efficient, or they may be more appropriate for a specific
protocol that you want to connect to, but the “right way” is the one you find easiest to
get working in your project.

The Processing Development Environment

Some of the examples in this chapter use the Processing language to send and receive
serial messages on a computer talking to Arduino.

Processing is a free open source tool that uses a similar development environment to
Arduino. You can read more about Processing and download everything you need at
the Processing website.

Processing is based on the Java language, but the Processing code samples in this book
should be easy to translate into other environments that support serial communica-
tions. Processing comes with some example sketches illustrating communication
between Arduino and Processing. SimpleRead is a Processing example that includes
Arduino code. In Processing, select File-Examples—Libraries—Serial-SimpleRead to
see an example that reads data from the serial port and changes the color of a rectangle
when a switch connected to Arduino is pressed and released.

See Also

An Arduino RS-232 tutorial is available at http://www.arduino.cc/en/Tutorial/Arduino
SoftwareRS232. Lots of information and links are available at the Serial Port Central
website, http://www.lvr.com/serport.htm.

In addition, a number of books on Processing are also available:
* Getting Started with Processing: A Quick, Hands-on Introduction by Casey Reas and
Ben Fry (Make).

* Processing: A Programming Handbook for Visual Designers and Artists by Casey
Reas and Ben Fry (MIT Press).

* Visualizing Data by Ben Fry (O’Reilly).
* Processing: Creative Coding and Computational Art by Ira Greenberg (Apress).

* Making Things Talk by Tom Igoe (Make). This book covers Processing and Arduino
and provides many examples of communication code.

4.0 Introduction | 85

http://processing.org/
http://www.arduino.cc/en/Tutorial/ArduinoSoftwareRS232
http://www.arduino.cc/en/Tutorial/ArduinoSoftwareRS232
http://www.lvr.com/serport.htm
http://oreilly.com/catalog/0636920000570/
http://oreilly.com/catalog/9780596514556/
http://oreilly.com/catalog/0636920010920/

4.1 Sending Debug Information from Arduino to
Your Computer

Problem

You want to send text and data to be displayed on your PC or Mac using the Arduino
IDE or the serial terminal program of your choice.

Solution
This sketch prints sequential numbers on the Serial Monitor:

/*
* SerialOutput sketch

* Print numbers to the serial port
*/

void setup()

{

Serial.begin(9600); // send and receive at 9600 baud
}

int number = 0;
void loop()
{

Serial.print("The number is ");
Serial.println(number); // print the number

delay(500); // delay half second between numbers
number++; // to the next number

}

Connect Arduino to your computer just as you did in Chapter 1 and upload this sketch.
Click the Serial Monitor icon in the IDE and you should see the output displayed as
follows:

The number is 0

The number is 1
The number is 2

Discussion

To print text and numbers from your sketch, put the Serial.begin(9600) statement in
setup(), and then use Serial.print() statements to print the text and values you want
to see.

The Arduino Serial Monitor function can display serial data sent from Arduino. To
start the Serial Monitor, click the Serial Monitor toolbar icon as shown in Figure 4-2.
A new window will open for displaying output from Arduino.

86 | Chapter4: Serial Communications

The number is 0
The number is 1
The number is
The number is 3
The number is 4

% SerialOutput.pds
Print mumbers to the serial port
=

woid setup [}

{
Serial.beqin(9600); // send and receive at 9600 baud
}

int number = 0;

woid loop()

{
Serial.print("The number is ") ;
Serial.println(number); // print the number

[Bitoscrali (Nolneending - [9600baud «

delay(500): /4 delay half second between mumbers
number+; /7 to the next number

Figure 4-2. Clicking the Serial Monitor icon to see serial output

Your sketch must call the Serial.begin() function before it can use serial input or
output. The function takes a single parameter: the desired communication speed. You
must use the same speed for the sending side and the receiving side, or you will see
gobbledygook (or nothing at all) on the screen. This example and most of the others
in this book use a speed of 9,600 baud (baud is a measure of the number of bits trans-
mitted per second). The 9,600 baud rate is approximately 1,000 characters per second.
You can send at lower or higher rates (the range is 300 to 115,200), but make sure both
sides use the same speed. The Serial Monitor sets the speed using the baud rate drop
down (at the bottom right of the Serial Monitor window in Figure 4-2). If your output
looks something like this:

322f<IxInoon{ 3224<

you should check that the selected baud rate on your computer matches the rate set by
Serial.begin() in your sketch.

If your sending and receiving serial speeds are set correctly but you are
still getting unreadable text, check that you have the correct board se-
o+ lected in the IDE Tools—Board menu. If you have selected the wrong
board, change it to the correct one and upload to the board again.

4.1 Sending Debug Information from Arduino to Your Computer | 87

You can display text using the Serial.print() function. Strings (text within double
quotes) will be printed as is (but without the quotes). For example, the following code:

Serial.print("The number is ");

prints this:

The number is

The values (numbers) that you print depend on the type of variable; see Recipe 4.2 for
more about this. But for now, printing an integer will print its numeric value, so if the
variable number is 1, the following code:

Serial.println(number);
will print this:
1

In the example sketch, the number printed will be 0 when the loop starts and will
increase by one each time through the loop. The 1n at the end of println causes the
next print statement to start on a new line.

That should get you started printing text and the decimal value of integers. See Rec-
ipe 4.2 for more detail on print formatting options.

You may want to consider a third-party terminal program that has more features than
Serial Monitor. Displaying data in text or binary format (or both), displaying control
characters, and logging to a file are just a few of the additional capabilities available
from the many third-party terminal programs. Here are some that have been recom-
mended by Arduino users:

CuteCom
An open source terminal program for Linux
Bray Terminal
A free executable for the PC
GNU screen
An open source virtual screen management program that supports serial commu-
nications; included with Linux and Mac OS X

moserial

Another open source terminal program for Linux
PulTY

An open source SSH program for Windows; supports serial communications
RealTerm

An open source terminal program for the PC

ZTerm
A shareware program for the Mac

88 | Chapter4: Serial Communications

http://cutecom.sourceforge.net/
https://sites.google.com/site/terminalbpp/
http://www.gnu.org/software/screen/
http://live.gnome.org/moserial
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://realterm.sourceforge.net/
http://homepage.mac.com/dalverson/zterm/

In addition, an article in the Arduino wiki explains how to configure Linux to com-
municate with Arduino using TTY (see http://www.arduino.cc/playground/Interfacing/
LinuxTTY).

You can use a liquid crystal display as a serial output device, although it will be very
limited in functionality. Check the documentation to see how your display handles
carriage returns, as some displays may not automatically advance to a new line after
println statements.

See Also

The Arduino LiquidCrystal library for text LCDs uses underlying print functionality
similar to the Serial library, so you can use many of the suggestions covered in this
chapter with that library (see Chapter 11).

4.2 Sending Formatted Text and Numeric Data from Arduino

Problem

You want to send serial data from Arduino displayed as text, decimal values, hexadec-
imal, or binary.

Solution

You can print data to the serial port in many different formats; here is a sketch that

demonstrates all the format options:
/*
* SerialFormatting
* Print values in various formats to the serial port
*/
char chrvalue = 65; // these are the starting values to print
int intvValue = 65;
float floatValue = 65.0;

void setup()

Serial.begin(9600);
}

void loop()
{

Serial.println("chrvalue: ");
Serial.println(chrValue);

Serial.println(chrValue,BYTE);
Serial.println(chrValue,DEC);

4.2 Sending Formatted Text and Numeric Data from Arduino | 89

http://www.arduino.cc/playground/Interfacing/LinuxTTY
http://www.arduino.cc/playground/Interfacing/LinuxTTY

Serial.println("intValue: ");
Serial.println(intValue);

Serial.println(intValue,BYTE);
Serial.println(intValue,DEC);
Serial.println(intValue,HEX);
Serial.println(intValue,O0CT);
Serial.println(intValue,BIN);

Serial.println("floatValue: ");
Serial.println(floatValue);

delay(1000); // delay a second between numbers
chrValue++; // to the next value
intValue++;

}

The output (condensed here onto a few lines) is as follows:

chrValue: A A 65
intValue: 65 A 65 41 101 1000001
floatValue: 65.00

chrValue: B B 66
intValue: 66 B 66 42 102 1000010

Discussion

Printing a text string is simple: Serial.print("hello world"); sends the text string
“hello world” to a device at the other end of the serial port. If you want your output to
print a new line after the output, use Serial.println() instead of Serial.print().

Printing numeric values can be more complicated. The way that byte and integer values
are printed depends on the type of variable and an optional formatting parameter. The
Arduino language is very easygoing about how you can refer to the value of different
data types (see Recipe 2.2 for more on data types). But this flexibility can be confusing,
because even when the numeric values are similar, the compiler considers them to be
separate types with different behaviors. For example, printing a char will not necessarily
produce the same output as printing an int of the same value.

Here are some specific examples; all of them create variables that have similar values:

char asciiValue = 'A'; // ASCII A has a value of 65

char chrValue = 65; // an 8 bit character, this also is ASCII 'A'
int intValue = 65; // a 16 bit integer set to a value of 65
float floatValue = 65.0; // float with a value of 65

Table 4-2 shows what you will see when you print variables using Arduino routines.

90 | Chapter4: Serial Communications

Table 4-2. Output formats using Serial.print

Print Print Print Print Print Print
Datatype (val) (val,DEC) (val,BYTE) (val,HEX) (val,OCT) (val,BIN)

char A 65 A 41 101 1000001
int 65 65 A 41 101 1000001
long Format of long is the same as int

float 65.00 Formatting not supported for floating-point values

double 65.00 doubleisthesameasfloat

The sketch in this recipe uses a separate line of source code for each print statement.
This can make complex print statements bulky. For example, to print the following line:

At 5 seconds: speed = 17, distance = 120

you’d typically have to code it like this:

Serial.print("At ");
Serial.print(seconds);
Serial.print(" seconds: speed = ");
Serial.print(speed);
Serial.print(", distance = ");
Serial.println(distance);

That’s a lot of code lines for a single line of output. You could combine them like this:

Serial.print("At "); Serial.print(seconds); Serial.print(" seconds, speed = ");
Serial.print(speed); Serial.print(", distance = ");Serial.println(distance);

Or you could use the insertion-style capability of the compiler used by Arduino to
format your print statements. You can take advantage of some advanced C++ capa-
bilities (streaming insertion syntax and templates) that you can use if you declare a
streaming template in your sketch. This is most easily achieved by including the
Streaming library developed by Mikal Hart. You can read more about this library and
download the code from Mikal’s website.

If you use the Streaming library, the following gives the same output as the lines shown
earlier:

"

Serial << "At " << seconds <<
" << distance;

seconds, speed = " << speed << ", distance =

See Also

Chapter 2 provides more information on data types used by Arduino. The Arduino web
reference at http://arduino.cc/en/Reference/HomePage covers the serial commands, and
the Arduino web reference at http://www.arduino.cc/playground/Main/StreamingOut
put covers streaming (insertion-style) output.

4.2 Sending Formatted Text and Numeric Data from Arduino | 91

http://arduiniana.org/libraries/streaming/
http://arduino.cc/en/Reference/HomePage
http://www.arduino.cc/playground/Main/StreamingOutput
http://www.arduino.cc/playground/Main/StreamingOutput

4.3 Receiving Serial Data in Arduino

Problem

You want to receive data on Arduino from a computer or another serial device; for
example, to have Arduino react to commands or data sent from your computer.

Solution

It’s easy to receive 8-bit values (chars and bytes), because the Serial functions use 8-
bit values. This sketch receives a digit (single characters 0 through 9) and blinks the
LED on pin 13 at a rate proportional to the received digit value:

/*

* SerialReceive sketch

* Blink the LED at a rate proportional to the received digit value

*/

const int ledPin = 13; // pin the LED is connected to

int blinkRate=0; // blink rate stored in this variable

void setup()

Serial.begin(9600); // Initialize serial port to send and receive at 9600 baud
pinMode(ledPin, OUTPUT); // set this pin as output
}

void loop()

if (Serial.available()) // Check to see if at least one character is available

{

char ch = Serial.read();
if(ch >= '0' &8 ch <= '9") // is this an ascii digit between 0 and 9?

blinkRate = (ch - '0"); // ASCII value converted to numeric value
blinkRate = blinkRate * 100; // actual blinkrate is 100 mS times received
digit
}
}
blink();
}

// blink the LED with the on and off times determined by blinkRate
void blink()

digitalWrite(ledPin,HICH);
delay(blinkRate); // delay depends on blinkrate value
digitalWrite(ledPin,LOW);
delay(blinkRate);
}

Upload the sketch and send messages using the Serial Monitor. Open the Serial Monitor
by clicking the Monitor icon (see Recipe 4.1) and type a digit in the text box at the top

92 | Chapter4: Serial Communications

of the Serial Monitor window. Clicking the Send button will send the character typed
into the text box; you should see the blink rate change.

Discussion

Converting the received ASCII characters to numeric values may not be obvious if you
are not familiar with the way ASCII represents characters. The following converts the
character ch to its numeric value:

blinkRate = (ch - '0'); // ASCII value converted to numeric value

This is done by subtracting 48, because 48 is the ASCII value of the digit 0. For example,
if ch is representing the character 1, its ASCII value is 49. The expression 49- '0" is the
same as 49-48. This equals 1, which is the numeric value of the character 1.

In other words, the expression (ch - '0') is the same as (ch - 48); this converts the
ASCII value of the variable ch to a numeric value.

To get a clearer idea of the relationship between the ASCII values of characters repre-
senting the digits 0 through 9 and their actual numeric values, see the ASCII table in
Appendix G.

Receiving numbers with more than one digit involves accumulating characters until a
character that is not a valid digit is detected. The following code uses the same
setup() and blink() functions as those shown earlier, but it gets digits until the newline
character is received. It uses the accumulated value to set the blink rate.

W

The newline character (ASCII value 10) can be appended automatically
each time you click Send. The Serial Monitor has a drop-down box at
* Qs the bottom of the Serial Monitor screen (see Figure 4-1); change the
" option from “No line ending” to “Newline.”

Change the code that the loop code follows. Enter a value such as 123 into the Monitor
text box and click Send, and the blink delay will be set to 123 milliseconds:

int value;
void loop()
{ if(Serial.available())
{ char ch = Serial.read();
if(ch >= '0' &% ch <= '9") // is this an ascii digit between 0 and 9?
value = (value * 10) + (ch - '0'); // yes, accumulate the value
else if (ch == 10) // is the character the newline character
blinkRate = value; // set blinkrate to the accumulated value

Serial.println(blinkRate);
value = 0; // reset val to 0 ready for the next sequence of digits

4.3 Receiving Serial Data in Arduino | 93

}
}
blink();

Each digit is converted from its ASCII value to its numeric value. Because the numbers
are decimal numbers (base 10), each successive number is multiplied by 10. For ex-
ample, the value of the number 234 is 2 * 100 + 3 * 10 + 4. The code to accomplish that
is:

if(ch >= '0" & ch <= '9") // is this an ascii digit between 0 and 9?

value = (value * 10) + (ch - '0'); // yes, accumulate the value

}

If you want to handle negative numbers, your code needs to recognize the minus
("-") sign. For example:

int value = 0;
int sign = 1;

void loop()
{

if(Serial.available())
{
char ch = Serial.read();
if(ch >= '0" & ch <= '9") // is this an ascii digit between 0 and 9?
value = (value * 10) + (ch - '0'); // yes, accumulate the value

else if(ch == '-")

sign = -1;
else // this assumes any char not a digit or minus sign terminates the value
{

value = value * sign ; // set value to the accumulated value
Serial.println(value);
value = 0; // reset value to 0 ready for the next sequence of digits
sign = 1;
}
}
}

Another approach to converting text strings representing numbers is to use the C lan-
guage conversion function called atoi (for int variables) or atol (for long variables).
These obscurely named functions convert a string into integers or long integers. To use
them you have to receive and store the entire string in a character array before you can
call the conversion function.

This code fragment terminates the incoming digits on any character that is not a digit

(or if the buffer is full):

const int MaxChars = 5; // an int string contains up to 5 digits and

// is terminated by a 0 to indicate end of string
char strValue[MaxChars+1]; // must be big enough for digits and terminating null
int index = 0; // the index into the array storing the received digits

void loop()

94 | Chapter4: Serial Communications

if(Serial.available())
{
char ch = Serial.read();
if(index < MaxChars & ch >= '0' && ch <= '9'){
strValue[index++] = ch; // add the ASCII character to the string;

}
else
// here when buffer full or on the first non digit
strValue[index] = 0; // terminate the string with a 0
blinkRate = atoi(strValue); // use atoi to convert the string to an int
index = 0;
}
}
blink();

}

strValue is a numeric string built up from characters received from the serial port.

See Recipe 2.6 for information about character strings.

atoi (short for ASCII to integer) is a function that converts a character string to an
integer (atol converts to a long integer).

See Also

A web search for “atoi” or “atol” provides many references to these functions. Also see
the Wikipedia reference at http://en.wikipedia.org/wiki/Atoi.

4.4 Sending Multiple Text Fields from Arduinoina
Single Message

Problem

You want to send a message that contains more than one piece of information (field).
For example, your message may contain values from two or more sensors. You want
to use these values in a program such as Processing, running on your PC or Mac.

Solution

The easiest way to do this is to send a text string with all the fields separated by a
delimiting (separating) character, such as a comma:

// CommaDelimitedOutput sketch

void setup()

4.4 Sending Multiple Text Fields from Arduino in a Single Message | 95

http://en.wikipedia.org/wiki/Atoi

Serial.begin(9600);

void loop()

int valuel = 10; // some hardcoded values to send
int value2 = 100;
int value3 = 1000;

Serial.print('H'); // unique header to identify start of message
Serial.print(",");

Serial.print(value1,DEC);

Serial.print(",");

Serial.print(value2,DEC);

Serial.print(",");

Serial.print(value3,DEC);

Serial.print(","); // note that a comma is sent after the last field
Serial.println(); // send a cr/1f

delay(100);

}

Here is the Processing sketch that reads this data from the serial port:

//CommaDelimitedInput.pde (Processing Sketch)

import processing.serial.*;

Serial myPort; // Create object from Serial class
char HEADER = 'H'; // character to identify the start of a message
short LF = 10; // ASCII linefeed

short portIndex = 0; // select the com port, 0 is the first port

void setup() {
size(200, 200);

// WARNING!
// If necessary, change the definition of portIndex at the top of this
// sketch to the desired serial port.

//

println(Serial.list());

printIn(" Connecting to -> " + Serial.list()[portIndex]);
myPort = new Serial(this,Serial.list()[portIndex], 9600);

}

void draw() {

}

void serialEvent(Serial p)

{

String message = myPort.readStringUntil(LF); // read serial data

96 | Chapter4: Serial Communications

if(message != null)

print(message);
String [] data = message.split(","); // Split the comma-separated message
if(data[o].charAt(0) == HEADER) // check for header character in the

first field

for(int i = 1; i < data.length-1; i++) // skip the header and terminating

cr and 1f
{
int value = Integer.parselnt(data[i]);
println("value" + i+ " =" + value); //Print the value for each field
println();
}
}
Discussion

The code in this recipe’s Solution will send the following text string to the serial port
(\r indicates a carriage return and \n indicates a line feed):

H10,100,1000, \r\n

You must choose a separating character that will never occur within actual data; if your
data consists only of numeric values, a comma is a good choice for a delimiter. You
may also want to ensure that the receiving side can determine the start of a message to
make sure it has all the data for all the fields. You do this by sending a header character
to indicate the start of the message. The header character must also be unique; it should
not appear within any of the data fields and it must also be different from the separator
character. The example here uses an uppercase H to indicate the start of the message.
The message consists of the header, three comma-separated numeric values as ASCII
strings, and a carriage return and line feed.

The carriage return and line-feed characters are sent whenever Arduino prints using
the println() function, and this is used to help the receiving side know that the full
message string has been received. A comma is sent after the last numerical value to aid
the receiving side in detecting the end of the value.

The Processing code reads the message as a string and uses the Java split() method to
create an array from the comma-separated fields.

In most cases, the first serial port will be the one you want when using
a Mac and the last serial port will be the one you want when using
%" Windows. The Processing sketch includes code that shows the ports
available and the one currently selected—check that this is the port
connected to Arduino.

4.4 Sending Multiple Text Fields from Arduino in a Single Message | 97

See Also

The Processing website provides more information on installing and using this pro-
gramming environment. See http://processing.org/.

4.5 Receiving Multiple Text Fields in a Single Message
in Arduino

Problem

You want to receive a message that contains more than one field. For example, your
message may contain an identifier to indicate a particular device (such as a motor or
other actuator) and what value (such as speed) to set it to.

Solution

Arduino does not have the split() function used in the Processing code in Rec-
ipe 4.4, but the functionality can be implemented as shown in this recipe. The following
code receives a message with three numeric fields separated by commas. It uses the
technique described in Recipe 4.4 for receiving digits, and it adds code to identify
comma-separated fields and store the values into an array:

/*

* SerialReceiveMultipleFields sketch

* This code expects a message in the format: 12,345,678

* This code requires a newline character to indicate the end of the data
* Set the serial monitor to send newline characters

*/

const int NUMBER OF FIELDS = 3; // how many comma separated fields we expect
int fieldIndex = 0; // the current field being received
int values[NUMBER OF FIELDS]; // array holding values for all the fields

void setup()

Serial.begin(9600); // Initialize serial port to send and receive at 9600 baud

}

void loop()
{

if(Serial.available())
{
char ch = Serial.read();
if(ch >= '0" &8 ch <= '9") // is this an ascii digit between 0 and 9?

// yes, accumulate the value
values[fieldIndex] = (values[fieldIndex] * 10) + (ch - '0');
}

98 | Chapter4: Serial Communications

http://processing.org/

else if (ch == ',') // comma is our separator, so move on to the next field

if(fieldIndex < NUMBER_OF_FIELDS—l)
fieldIndex++; // increment field index
}

else

{
// any character not a digit or comma ends the acquisition of fields
// in this example it's the newline character sent by the Serial Monitor
Serial.print(fieldIndex +1);
Serial.println(" fields received:");
for(int i=0; i <= fieldIndex; i++)

Serial.println(values[i]);
values[i] = 0; // set the values to zero, ready for the next message

fieldIndex = 0; // ready to start over
}
}
}

Discussion

This sketch accumulates values (as explained in Recipe 4.3), but here each value is
added to an array (which must be large enough to hold all the fields) when a comma
is received. A character other than a digit or comma (such as the newline character; see
Recipe 4.3) triggers the printing of all the values that have been stored in the array.

Another approach is to use a library called TextFinder, which is available from the
Arduino Playground or from the website for this book. TextFinder was created to ex-
tract information from web streams (see Chapter 15), but it works just as well with
serial data. The following sketch uses TextFinder to provide similar functionality to the
previous sketch:

#include <TextFinder.h»>

TextFinder finder(Serial);

const int NUMBER OF FIELDS = 3; // how many comma-separated fields we expect
int fieldIndex = 0; // the current field being received

int values[NUMBER OF FIELDS]; // array holding values for all the fields

void setup()

Serial.begin(9600); // Initialize serial port to send and receive at 9600 baud
void loop()

for(fieldIndex = 0; fieldIndex < 3; fieldIndex ++)
{

values[fieldIndex] = finder.getValue(); // get a numeric value

4.5 Receiving Multiple Text Fields in a Single Message in Arduino | 99

http://oreilly.com/catalog/9780596802486/

}
Serial.print(fieldIndex);

Serial.println(" fields received:");
for(int i=0; i < fieldIndex; i++)

{
Serial.println(values[i]);
}
fieldIndex = 0; // ready to start over

}

You can download the TextFinder library from http://www.arduino.cc/playground/
Code/TextFinder.

Here is a summary of the methods supported by TextFinder (not all are used in the
preceding example):

boolean find(char *target);
Reads from the stream until the given target is found. It returns true if the target
string is found. A return of false means the data has not been found anywhere in
the stream and that there is no more data available. Note that TextFinder takes a
single pass through the stream; there is no way to go back to try to find or get
something else (see the findUntil method).

boolean findUntil(char *target, char *terminate);
Similar to the find method, but the search will stop if the terminate string is found.
Returns true only if the target is found. This is useful to stop a search on a keyword
or terminator. For example:

finder.finduntil("target", "\n");

will try to seek to the string "value", but will stop at a newline character so that
your sketch can do something else if the target is not found.

long getValue();
Returns the first valid (long) integer value. Leading characters that are not digits
oraminus sign are skipped. The integer is terminated by the first nondigit character
following the number. If no digits are found, the function returns 0.

long getValue(char skipChar);
Same as getValue, but the given skipChar within the numeric value is ignored. This
can be helpful when parsing a single numeric value that uses a comma between
blocks of digits in large numbers, but bear in mind that text values formatted with
commas cannot be parsed as a comma-separated string.

float getFloat();
The float version of getValue.

int getString(char *pre string,char *post string,char *buf,int length);
Finds the pre_string and then puts the incoming characters into the given buffer
until the post_string is detected. The end of the string is determined by a match
of a character to the first char post_string. Strings longer than the given length

100 | Chapter4: Serial Communications

http://www.arduino.cc/playground/Code/TextFinder
http://www.arduino.cc/playground/Code/TextFinder

are truncated to fit. The function returns the number of characters placed in the
buffer (0 means no valid data was found).

See Also

Chapter 15 provides more examples of TextFinder used to find and extract data from
a stream.

4.6 Sending Binary Data from Arduino

Problem

You need to send data in binary format, because you want to pass information with
the fewest number of bytes or because the application you are connecting to only han-
dles binary data.

Solution

This sketch sends a header followed by two integer (16-bit) values as binary data. The
values are generated using the Arduino random function (see Recipe 3.11):
/*
* SendBinary sketch
* Sends a header followed by two random integer values as binary data.

*/

int intValue; // an integer value (16 bits)
void setup()

{

Serial.begin(9600);

void loop()
{
Serial.print('H'); // send a header character

// send a random integer

intValue = random(599); // generate a random number between 0 and 599
// send the two bytes that comprise an integer
Serial.print(lowByte(intValue), BYTE); // send the low byte
Serial.print(highByte(intValue), BYTE); // send the high byte

// send another random integer

intvalue = random(599); // generate a random number between 0 and 599
// send the two bytes that comprise an integer
Serial.print(lowByte(intValue), BYTE); // send the low byte
Serial.print(highByte(intValue), BYTE); // send the high byte

delay(1000);

4.6 Sending Binary Data from Arduino | 101

Discussion

Sending binary data requires careful planning, because you will get gibberish unless the
sending side and the receiving side understand and agree exactly how the data will be
sent. Unlike text data, where the end of a message can be determined by the presence
of the terminating carriage return (or another unique character you pick), it may not
be possible to tell when a binary message starts or ends by looking just at the data—
data that can have any value can therefore have the value of a header or terminator
character.

This can be overcome by designing your messages so that the sending and receiving
sides know exactly how many bytes are expected. The end of a message is determined
by the number of bytes sent rather than detection of a specific character. This can be
implemented by sending an initial value to say how many bytes will follow. Or you can
fix the size of the message so that it’s big enough to hold the data you want to send.
Doing either of these is not always easy, as different platforms and languages can use
different sizes for the binary data types—both the number of bytes and their order may
be different from Arduino. For example, Arduino defines an int as two bytes, but Pro-
cessing (Java) defines an int as four bytes (short is the Java type for a 16-bit integer).
Sending an int value as text (as seen in earlier text recipes) simplifies this problem
because each individual digit is sent as a sequential digit (just as the number is written).
The receiving side recognizes when the value has been completely received by a carriage
return or other nondigit delimiter. Binary transfers can only know about the compo-
sition of a message if it is defined in advance or specified in the message.

This recipe’s Solution requires an understanding of the data types on the sending and
receiving platforms and some careful planning. Recipe 4.7 shows example code using
the Processing language to receive these messages.

Sending single bytes is easy; use Serial.print(byteval). To send an integer from
Arduino you need to send the low and high bytes that make up the integer (see Rec-
ipe 2.2 for more on data types). You do this using the lowByte and highByte functions
(see Recipe 3.14):

Serial.print(lowByte(intValue), BYTE);
Serial.print(highByte(intValue), BYTE);

The preceding code sends the low byte followed by the high byte. The code can also
be written without the BYTE parameter (see Recipe 4.2), but using the parameter is a
useful reminder (when you come back later to make changes, or for others who may
read your code) that your intention is to send bytes rather than ASCII characters.

Sending a long integer is done by breaking down the four bytes that comprise a long in
two steps. The long is first broken into two 16-bit integers; each is then sent using the
method for sending integers described earlier:

int longValue = 1000;
int intValue;

102 | Chapter4: Serial Communications

First you send the lower 16-bit integer value:

intValue = longValue &% OXFFFF; // get the value of the lower 16 bits
Serial.print(lowByte(intVal), BYTE);
Serial.print(highByte(intVal), BYTE);

Then you send the higher 16-bit integer value:

intvalue = longValue >> 16; // get the value of the higher 16 bits
Serial.print(lowByte(intVal), BYTE);
Serial.print(highByte(intval), BYTE);

You may find it convenient to create functions to send the data. Here is a function that
uses the code shown earlier to print a 16-bit integer to the serial port:

// function to send the given integer value to the serial port
void sendBinary(int value)

// send the two bytes that comprise a two byte (16 bit) integer
Serial.print(lowByte(value), BYTE); // send the low byte
Serial.print(highByte(value), BYTE); // send the high byte

}

The following function sends the value of a long (4-byte) integer by first sending the
two low (rightmost) bytes, followed by the high (leftmost) bytes:

// function to send the given long integer value to the serial port
void sendBinary(long value)

{

// first send the low 16 bit integer value

int temp = value 8& OXFFFF; // get the value of the lower 16 bits
sendBinary(temp);

// then send the higher 16 bit integer value:

temp = value >> 16; // get the value of the higher 16 bits
sendBinary(temp);

}

These functions to send binary int and long values have the same name: sendBinary.
The compiler distinguishes them by the type of value you use for the parameter. If your
code calls printBinary with a 2-byte value, the version declared as void sendBinary(int
value) will be called. If the parameter is a long value, the version declared as void
sendBinary(long value) will be called. This behavior is called function overloading.
Recipe 4.2 provides another illustration of this; the different functionality you saw in
Serial.print is due to the compiler distinguishing the different variable types used.

You can also send binary data using structures. Structures are a mechanism for organ-
izing data, and if you are not already familiar with their use you may be better off sticking
with the solutions described earlier. For those who are comfortable with the concept
of structure pointers, the following is a function that will send the bytes within a struc-
ture to the serial port as binary data:

void sendStructure(char *structurePointer, int structurelength)

{

int i;

4.6 Sending Binary Data from Arduino | 103

for (i = 0 ; 1 < structurelength ; i++)
serial.print(structurePointer[i], BYTE);

}

sendStructure((char *)8&myStruct, sizeof(myStruct));

Sending data as binary bytes is more efficient than sending data as text, but it will only
work reliably if the sending and receiving sides agree exactly on the composition of the
data. Here is a summary of the important things to check when writing your code:

Variable size
Make sure the size of the data being sent is the same on both sides. An integer is
2 bytes on Arduino, 4 bytes on most other platforms. Always check your program-
ming language’s documentation on data type size to ensure agreement. There is
no problem with receiving a 2-byte Arduino integer as a 4-byte integer in Processing
as long as Processing expects to get only two bytes. But be sure that the sending
side does not use values that will overflow the type used by the receiving side.

Byte order
Make sure the bytes within an int or long are sent in the same order expected by
the receiving side.

Synchronization

Ensure that your receiving side can recognize the beginning and end of a message.
If you start listening in the middle of a transmission stream, you will not get valid
data. This can be achieved by sending a sequence of bytes that won’t occur in the
body of a message. For example, if you are sending binary values from analog
Read, these can only range from 0 to 1,023, so the most significant byte must be
less than 4 (the int value of 1,023 is stored as the bytes 3 and 255); therefore, there
will never be data with two consecutive bytes greater than 3. So, sending two bytes
of 4 (or any value greater than 3) cannot be valid data and can be used to indicate
the start or end of a message.

Structure packing
If you send or receive data as structures, check your compiler documentation to
make sure the packing is the same on both sides. Packing is the padding that a
compiler uses to align data elements of different sizes in a structure.

Flow control
Either choose a transmission speed that ensures that the receiving side can keep
up with the sending side, or use some kind of flow control. Flow control is a hand-
shake that tells the sending side that the receiver is ready to get more data.

See Also
Chapter 2 provides more information on the variable types used in Arduino sketches.

Also, check the Arduino references for lowByte at hitp://www.arduino.cc/en/Reference/
LowByte and highByte at http://www.arduino.cc/en/Reference/HighByte.

104 | Chapter4: Serial Communications

http://www.arduino.cc/en/Reference/LowByte
http://www.arduino.cc/en/Reference/LowByte
http://www.arduino.cc/en/Reference/HighByte

The Arduino compiler packs structures on byte boundaries; see the documentation for
the compiler you use on your computer to set it for the same packing. If you are not
clear on how to do this, you may want to avoid using structures to send data.

For more on flow control, see hitp://en.wikipedia.org/wiki/Flow_control.

4.7 Receiving Binary Data from Arduino on a Computer

Problem

You want to respond to binary data sent from Arduino in a programming language
such as Processing. For example, you want to respond to Arduino messages sent in
Recipe 4.6.

Solution

This recipe’s Solution depends on the programming environment you use on your PC
or Mac. If you don’t already have a favorite programming tool and want one that is
easy to learn and works well with Arduino, Processing is an excellent choice.

Here are the two lines of Processing code to read a byte, taken from the Processing
SimpleRead example (see this chapter’s introduction):

if (myPort.available() > 0) { // If data is available,
val = myPort.read(); // read it and store it in val

As you can see, this is very similar to the Arduino code you saw in earlier recipes.

The following is a Processing sketch that sets the size of a rectangle proportional to the
integer values received from the Arduino sketch in Recipe 4.6:
/*

* ReceiveBinaryData P
*

* portIndex must be set to the port connected to the Arduino
*/

import processing.serial.*;

Serial myPort; // Create object from Serial class
short portIndex = 1; // select the com port, 0 is the first port

char HEADER = 'H';
int value1l, value2; // Data received from the serial port

void setup()

size(600, 600);

// Open whatever serial port is connected to Arduino.
String portName = Serial.list()[portIndex];
println(Serial.list());

println(" Connecting to -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);

4.7 Receiving Binary Data from Arduino on a Computer | 105

http://en.wikipedia.org/wiki/Flow_control

}

void draw()

// read the header and two binary *(16 bit) integers:
if (myPort.available() »>= 5) // If at least 5 bytes are available,

if(myPort.read() == HEADER) // is this the header
{

valuel = myPort.read(); // read the least significant byte
valuel = myPort.read() * 256 + valuel; // add the most significant byte

value2 = myPort.read(); // read the least significant byte
value2 = myPort.read() * 256 + value2; // add the most significant byte

println("Message received: " + valuel + "," + value2);

}
}
background(255); // Set background to white
fill(0); // set fill to black

// draw rectangle with coordinates based on the integers received from Arduino
rect(o, 0, valuel,value2);

}

Discussion

The Processing language influenced Arduino, and the two are intentionally similar. The
setup function in Processing is used to handle one-time initialization, just like in
Arduino. Processing has a display window, and setup sets its size to 600 x 600 pixels
with the call to size(600,600).

The line String portName = Serial.list()[portIndex]; selects the serial port—in Pro-
cessing, all available serial ports are contained in the Serial.list object and this ex-
ample uses the value of a variable called portIndex. println(Serial.list()) prints all
the available ports, and the line myPort = new Serial(this, portName, 9600); opens
the port selected as portName. Ensure that you set portIndex to the serial port that is
connected to your Arduino.

The draw function in Processing works like loop in Arduino; it is called repeatedly. The
code in draw checks if data is available on the serial port; if so, bytes are read and
converted to the integer value represented by the bytes. A rectangle is drawn based on
the integer values received.

See Also

You can read more about Processing on the Processing website.

106 | Chapter4: Serial Communications

http://processing.org/

4.8 Sending Binary Values from Processing to Arduino

Problem

You want to send binary bytes, integers, or long values from Processing to Arduino.
For example, you want to send a message consisting of a message identifier “tag,” an
index (perhaps indicating a particular device attached to Arduino), and a 16-bit value.

Solution

Use this code:

/* SendingBinaryToArduino

* Language: Processing
*/

import processing.serial.*;

Serial myPort; // Create object from Serial class
public static final char HEADER = '|';
public static final char MOUSE = 'M';

void setup()
{

size(200, 400);
String portName = Serial.list()[0];
myPort = new Serial(this, portName, 9600);

}

void draw(){

void serialEvent(Serial p) {
// handle incoming serial data
String inString = myPort.readStringUntil('\n');
if(inString != null) {
println(inString); // echo text string from Arduino

}

When the mouse is clicked in the Processing window, sendMessage will be called with
index equal to the vertical position of the mouse in the window when clicked and
value equal to the horizontal position. The window size was set to 200,400, so index
would fit into a single byte and value would fit into two bytes:
void mousePressed() {
int index = mouseY;

int value = mouseX;
sendMessage (MOUSE, index, value);

4.8 Sending Binary Values from Processing to Arduino | 107

sendMessage sends a header, tag, and index as single bytes. It sends the value as two
bytes, with the most significant byte first:
void sendMessage(char tag, int index, int value){

// send the given index and value to the serial port

myPort.write(HEADER);

myPort.write(tag);

myPort.write(index);

char ¢ = (char)(value / 256); // msb

myPort.write(c);

¢ = (char)(value & oxff); // 1lsb

myPort.write(c);

}

The Arduino code to receive this and echo the results back to Processing is:

//BinaryDataFromProcessing

The next three defines must mirror the definitions used in the sending program:

#define HEADER "
#define MOUSE ‘M
#define MESSAGE_BYTES 5 // the total bytes in a message

void setup()
{

Serial.begin(9600);

void loop(){

The check to ensure that at least MESSAGE_BYTES have been received ensures that we
don’t try to process the message until all the required data is available:

if (Serial.available() >= MESSAGE_BYTES)
{

Only read the rest of the message if a valid header has been received:
if(Serial.read() == HEADER)

char tag = Serial.read();
if(tag == MOUSE)
{

int index = Serial.read(); // this was sent as a char
but it's ok to use it as an int

The next lines convert the two bytes back to an integer. Serial.read() * 256; restores
the most significant byte to its original value. Compare this to Processing code that sent
the two bytes comprising the value:

int val = Serial.read() * 256;

val = val + Serial.read();
Serial.print("Received mouse msg, index = ");
Serial.print(index);

Serial.print(", value ");

108 | Chapter4: Serial Communications

Serial.println(val);

else

{

If the code gets here, the tag was not recognized. This helps you to ignore data that may
be incomplete or corrupted:
Serial.print("got message with unknown tag ");
Serial.println(tag);
}
}

}
}

Discussion

This code is similar to the Processing code in the previous recipes, with the addition of
a function called sendMessage. In this example, the function is called with three pa-
rameters: a tag, an index, and a value. The function first sends the header character to
identify the start of the message. Then the single byte index is sent, followed by the two
bytes that comprise the integer value. You can make your own version of this function
to send the combination of values that you need for your application.

4.9 Sending the Value of Multiple Arduino Pins

Problem

You want to send groups of binary bytes, integers, or long values from Arduino. For
example, you may want to send the values of the digital and analog pins to Processing.

Solution

This recipe sends a header followed by an integer containing the bit values of digital
pins 2 to 13. This is followed by six integers containing the values of analog pins 0
through 5. Chapter 5 has many recipes that set values on the analog and digital pins
that you can use to test this sketch:
/*
* SendBinaryFields
* Sends digital and analog pin values as binary data

*/

const char HEADER = 'H'; // a single character header to indicate the start
of a message

// these are the values that will be sent in binary format

void setup()

Serial.begin(9600);
for(int i=2; i <= 13; i++)

4.9 Sending the Value of Multiple Arduino Pins | 109

{
pinMode(i, INPUT); // set pins 2 through 13 to inputs
digitalWrite(i, HICH); // turn on pull-ups

}
void loop()
{
Serial.print(HEADER,BYTE); // send the header

// put the bit values of the pins into an integer
int values = 0;

int bit = 0;
for(int i=2; i <= 13; i++)
{

bitWrite(values, bit, digitalRead(i)); // set the bit to 0 or 1 depending
// on value of the given pin
bit = bit + 1; // increment to the next bit

}

sendBinary(values); // send the integer

for(int i=0; i < 6; i++)

{
values = analogRead(i);
sendBinary(values); // send the integer

delay(1000); //send every second
}

// function to send the given integer value to the serial port
void sendBinary(int value)

// send the two bytes that comprise an integer

Serial.print(lowByte(value), BYTE); // send the low byte

Serial.print(highByte(value), BYTE); // send the high byte
}

Discussion

The code sends a header (the character H), followed by an integer holding the digital
pin values using the bitRead function to set a single bit in the integer to correspond to
the value of the pin (see Chapter 3). It then sends six integers containing the values read
from the six analog ports (see Chapter 5 for more information). All the integer values
are sent using sendBinary, introduced in Recipe 4.6. The message is 15 bytes long—1
byte for the header, 2 bytes for the digital pin values, and 12 bytes for the six analog
integers. The code for the digital and analog inputs is explained in Chapter 5.

Assuming analog pins have values of 0 on pin 0, 100 on pin 1, and 200 on pin 2 through
500 on pin 5, and digital pins 2 through 7 are high and 8 through 13 are low, this is the
decimal value of each byte that gets sent:

72 // the character 'H' - this is the header

// two bytes in low high order containing bits representing pins 2-13
63 // binary 00111111 : this indicates that pins 2-7 are high

110 | Chapter4: Serial Communications

0 // this indicates that 8-13 are low

// two bytes for each pin representing the analog value
0 // pin 0 has an integer value of 0 so this is sent as two bytes

100 // pin 1 has a value of 100, sent as a byte of 100 and a byte of 0

// pin 5 has a value of 500
244 // the remainder when dividing 500 by 256
1 // the number of times 500 can be divided by 256

This Processing code reads this message and prints the values to the Processing console:
/*

* ReceiveMultipleFieldsBinary P
*
* portIndex must be set to the port connected to the Arduino

*/
import processing.serial.*;

Serial myPort; // Create object from Serial class
short portIndex = 0; // select the com port, 0 is the first port

char HEADER = 'H';
void setup()

size(200, 200);

// Open whatever serial port is connected to Arduino.
String portName = Serial.list()[portIndex];
println(Serial.list());

println(" Connecting to -> " + Serial.list()[portIndex]);
myPort = new Serial(this, portName, 9600);

}
void draw()
int val;
if (myPort.available() >= 15) // wait for the entire message to arrive
?f(myPort.read() == HEADER) // is this the header

println("Message received:");
// header found
// get the integer containing the bit values
val = readArduinoInt();
// print the value of each bit
for(int pin=2, bit=1; pin <= 13; pin++){
print("digital pin " + pin + " = ");
int isSet = (val & bit);
if(isSet == 0)
println("0");

4.9 Sending the Value of Multiple Arduino Pins | 111

else
println("1");
bit = bit * 2; // shift the bit

println();
// print the six analog values
for(int i=0; i < 6; i ++){

val = readArduinoInt();

println("analog port " + i + "= " + val);
println("----");
}

}
}
// return the integer value from bytes received on the serial port (in low,high
order)
int readArduinoInt()
{

int val; // Data received from the serial port

val = myPort.read(); // read the least significant byte

val = myPort.read() * 256 + val; // add the most significant byte
return val;

}

The Processing code waits for 15 characters to arrive. If the first character is the header,
it then calls the function named readArduinoInt to read two bytes and transform them
back into an integer by doing the complementary mathematical operation that was
performed by Arduino to get the individual bits representing the digital pins. The six
integers are then representing the analog values.

See Also

To send Arduino values back to the computer or drive the pins from the computer
(without making decisions on the board), consider using Firmata (http://www.firmata
.org). The Firmata library is included in the Arduino software, and a library is available
to use in Processing. You load the Firmata code onto Arduino, control whether pins
are inputs or outputs from the computer, and then set or read those pins.

4.10 How to Move the Mouse Cursor on a PC or Mac

Problem

You want Arduino to interact with an application on your computer by moving the
mouse cursor. Perhaps you want to move the mouse position in response to Arduino
information. For example, suppose you have connected a Wii nunchuck (see
Recipe 13.2) to your Arduino and you want your hand movements to control the po-
sition of the mouse cursor in a program running in a PC.

112 | Chapter4: Serial Communications

http://www.firmata.org
http://www.firmata.org

Solution

You can send serial commands that contain the mouse cursor position to a program
running on the target computer. Here is a sketch that moves the mouse cursor based
on the position of two potentiometers:

// SerialMouse sketch
#define potXPin 4
#define potYPin 5

void setup()

Serial.begin(9600);

void loop()
{

int x = analogRead(potXPin);

int y = analogRead(potYPin);
Serial.print(x,DEC);

Serial.print(“,");

Serial.print(y,DEC);

Serial.println(); // send a cr/1f

delay(50); // send position 20 times a second

}

Figure 4-3 illustrates the wiring for two potentiometers (see Chapter 5 for more details).

AreF[)

0000000 00000000

DIGITAL

Arduino

oo

oo

&
— @ e ANALOG
- (j()u %gﬁéﬁ e N)

£
[IIIIFD 000000
10K 10K
< —>
Pot Pot

Figure 4-3. Wiring for two potentiometers

4.10 How to Move the Mouse Cursorona PCorMac | 113

The Processing code is based on the code shown in Recipe 4.4:
/*

* ArduinoMouse.pde (Processing sketch)

*/

/* WARNING: This sketch takes over your mouse
Press escape to close running sketch */

import processing.serial.*;

Serial myPort; // Create object from Serial class
Robot myRobot; // create object from Robot class;

public static final char HEADER = 'M'; // character to identify the start of

a message

public static final short LF = 10; // ASCII linefeed

public static final short portIndex = 1; // select the com port, 0 is the first
port

void setup() {
size(200, 200);
println(Serial.list());
println(" Connecting to -> " + Serial.list()[portIndex]);
myPort = new Serial(this,Serial.list()[portIndex], 9600);
try {
myRobot = new Robot(); // the Robot class gives access to the mouse
}
catch (AWTException e) { // this is the Java exception handler
e.printStackTrace();
}
}

void draw() {

}

void serialEvent(Serial p) {
String message = myPort.readStringUntil(LF); // read serial data
if(message != null)

print(message);

String [] data = message.split(","); // Split the comma-separated message

if(data[0].charAt(0) == HEADER) // check for header character in the first
field

if(data.length > 3)

int x = Integer.parseInt(data[1]);

int y = Integer.parseInt(data[2]);

print("x= " + x);

println(", y= " +y);

myRobot .mouseMove(x,y); // move mouse to received x and y position

114 | Chapter4: Serial Communications

}
}

The Processing code splits the message containing the x and y coordinates and sends
them to the mouseMove method of the Java Robot class.

Discussion

This technique for controlling applications running on your computer is easy to im-
plement and should work with any operating system that can run the Processing
application.

W

- Some platforms require special privileges or extensions to access low-
"‘:\ level input control. If you can’t get control of the mouse, check the
T 98y documentation for your operating system.

If you require Arduino to actually appear as though it were a mouse to the computer,
you have to emulate the actual USB protocol real mice use. This protocol, for Human
Interface Devices (HID), is complex, but Phillip Lindsay has some useful information
and code at http://code.google.com/p/vusb-for-arduinol.

A runaway Robot object has the ability to remove your control over the
) mouse and keyboard if used in an endless loop.

See Also

Go to http://java.sun.com/j2se/1.3/docs/apil/javalawt/Robot.html for more information
on the Java Robot class.

An article on using the Robot class is available at hitp://www.developer.com/javalother/
article.php/10936_2212401_1.

If you prefer to use a Windows programming language, the low-level Windows API
function to insert keyboard and mouse events into the input stream is called
SendInput. You can visit hitp://msdn.microsoft.com/en-us/library/ms646310(VS.85)
.aspx for more information.

4.11 Controlling Google Earth Using Arduino

Problem

You want to control movement in an application such as Google Earth using sensors
attached to Arduino. For example, you want sensors to detect hand movements to act

4.11 Controlling Google Earth Using Arduino | 115

http://code.google.com/p/vusb-for-arduino/
http://java.sun.com/j2se/1.3/docs/api/java/awt/Robot.html
http://www.developer.com/java/other/article.php/10936_2212401_1
http://www.developer.com/java/other/article.php/10936_2212401_1
http://msdn.microsoft.com/en-us/library/ms646310(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms646310(VS.85).aspx

as the control stick for the flight simulator in Google Earth. The sensors could use a
joystick (see Recipe 6.17) or a Wii nunchuck (see Recipe 13.2).

Solution

Google Earth lets you “fly” anywhere on Earth to view satellite imagery, maps, terrain,
and 3D buildings (see Figure 4-4). It contains a flight simulator that can be controlled
by a mouse, and this recipe uses techniques described in Recipe 4.10 combined with a
sensor connected to Arduino to provide the joystick input.

Figure 4-4. Google Earth flight simulator

This recipe’s Solution is based on the method used in Recipe 4.10 for emulating a mouse
by sending Arduino data to Processing. The Arduino code sends the horizontal and
vertical positions determined by reading the joystick values (the joystick code is dis-
cussed in Recipe 6.17) from a PlayStation game controller:

*
GoogleEarthPSX

Send joystick data from PSX to Processing
uses PSX library discussed in Recipe 6.17

#include <Psx.h> // Includes the Psx Library

Psx Psx; // Create an instance of the Psx library
const int dataPin = 5;

116 | Chapter4: Serial Communications

const int cmndPin = 4;

const int attPin = 3;

const int clockPin = 2;

const int psxDelay = 10; // this determines the clock delay in microseconds

const byte nudge = 64; // the amount of movement to be sent when stick is pushed
const byte HEADER = 255; // this value is sent as the header

unsigned int data;

byte x,y, buttons;

void setup()
{

Serial.begin(9600);
Psx.setupPins(dataPin, cmndPin, attPin, clockPin, psxDelay); // initialize Psx

}

void loop()
{

data = Psx.read(); // get the psx controller button data
X =y = 127; // center x & y values, offsets are added if buttons pressed
buttons = 0;

if(data & psxLeft || data & psxSqu)
X = X - nudge;
if(data & psxDown ||data & psxX)
y =y + nudge;
if(data & psxRight ||data & psx0)
X = X + nudge;
if(data & psxUp ||data & psxTri)
y =y - nudge;
if(data & psxStrt) // (Z button)
buttons = buttons + 2;
if(data & psxSlct) // (C button)
buttons = buttons + 1;

Serial.print(HEADER);
Serial.print(x);
Serial.print(y);
Serial.print(buttons);

delay(20); // send position 50 times a second
The Processing sketch reads the header byte and three data bytes for x and y mouse

position and button state. The technique for handling binary data is discussed in
Recipe 4.7:

GoogleEarthFS P

Read Arduino Serial packets
and send mouse position to Google Earth

4.11 Controlling Google Earth Using Arduino | 117

*

*/

import processing.serial.*;

Serial myPort; // Create object from Serial class

int portIndex = 1; // select the com port, 0 is the first port
int HEADER = 255;

int val; // Data received from the serial port

GoogleFS myGoogle;
void setup()
{

size(256, 256);
println(Serial.list());
println(" Connecting to -> " + Serial.list()[portIndex]);
myPort = new Serial(this,Serial.list()[portIndex], 9600);
myGoogle = new GoogleFS();
smooth();
fi111(255);
background(255);
println("Start Google FS in the center of your screen");
println("center the mouse pointer in google earth
and press Z button to start");
do{
getData();

while(buttons != 2); // wait for data and Z button to start

println("started");
myGoogle.mousePress (InputEvent.BUTTON1 MASK); // starts the FS

}

int accx,accy,buttons;
int xOffset, yOffset = 0;

boolean getData(){
if (myPort.available() >= 4) { // If a data packet is available,
if(myPort.read() == HEADER){ // check for header
// erase the old markers
stroke(255);
ellipse(accx, accy,4,4);

accx = myPort.read();
accy = myPort.read();
buttons = myPort.read();
if(x0ffset == 0){
// here if first time
xOffset = accx;
yoffset = accy;

if(buttons == 1) {
println("tbutton: c");

118 | Chapter4: Serial Communications

x0ffset = accx;
yOffset = accy;

}
if(buttons == 3){
exit();

return true; // data available

}
}

return false;

}

void draw()

if(getData()){
if(buttons != 2){
// only activate the mouse when the Z button is not pressed
myGoogle.move(accx- xOffset, accy - yOffset);

print("accx: "); print(accx);
print("\taccy: "); print(accy);

println();

stroke(255,0,0); ellipse(accx, accy,4,4);

}
}

class GoogleFS {
Robot myRobot; // create object from Robot class;
int centerX,centerY;
GoogleFS(){
try {
myRobot = new Robot();

catch (AWTException e) {
e.printStackTrace();
}
Dimension screen = java.awt.Toolkit.getDefaultToolkit().getScreenSize();
centerY = (int)screen.getHeight() / 2 ;
centerX = (int)screen.getWidth() / 2;
}
// moves mouse from center of screen by given offset
void move(int offsetX, int offsetY){
myRobot.mouseMove(centerX + 4 * offsetX,centerY + -4 * offsetY);

void mousePress(int button){
myRobot .mousePress(button) ;

}
}

Discussion

Arduino determines the horizontal and vertical positions by reading the joystick value
from the PSX (PlayStation game controller). This control does not actually provide a

4.11 Controlling Google Earth Using Arduino | 119

value proportional to the stick position, so the Arduino code sends an offset from the
center when the stick is moved—this is the nudge variable and it determines the value
of this offset, and therefore the sensitivity of the control. The state of the Select and
Start switches is also sent (when pressed, Select has a value of 2 and Start has a value
of 1; when both are pressed the value is 3, and when no button is pressed the value is 0).

Follow the instructions for connecting the PSX in Recipe 6.17.

Google Earth is a free download; you can get it from the Google website, http://earth
.google.com/download-earth.html. Download and run the version for your operating
system to install it on your computer. Start Google Earth, and from the Tools menu,
select Enter Flight Simulator. Select an aircraft (the SR22 is easier to fly than the F16)
and an airport. The Joystick support should be left unchecked—you will be using the
mouse to control the aircraft. Click the Start Flight button and immediately press the
space bar to pause the simulator so that you can get the Processing sketch running.

Run the GoogleEarthFS_P sketch and press the Start button on the PSX controller. You
will see a dot in the Processing draw window showing the joystick position, and you
should see this move as you press the PSX controller joystick buttons. At this point,
the mouse position is under the control of Arduino, but control returns to your com-
puter mouse when you hold the PSX Start button. Make Google Earth the Active win-
dow by holding the PSX Start button and clicking on Google Earth.

You are now ready to fly. Release the PSX Start button, press Page Up on your keyboard
a few times to increase the throttle, and then press the space bar on your keyboard to
unpause the simulator. When the SR22 reaches an air speed that is a little over 100
knots, you can “pull back” on the stick and fly. Information explaining the simulator
controls is available in the Help menu.

Here is another variation that sends a similar message to the Processing sketch. This
one uses the Wii nunchuck code from Recipe 13.2:
/¥

* WiichuckSerial
*

* based on code from Tod E. Kurt, http://thingm.com/

* Modified to send serial packets to Processing
*

*/
#include <Wire.h>
#include "nunchuck_funcs.h"

int loop_cnt=0;
const byte header = 254; // a value to indicate start of message

byte accx,accy, joyx,joyy,buttons;

// set the current coordinates as the center points

120 | Chapter4: Serial Communications

http://earth.google.com/download-earth.html
http://earth.google.com/download-earth.html

void setup()
{

Serial.begin(9600);
nunchuck_setpowerpins();
nunchuck_init(); // send the initialization handshake
nunchuck_get_data(); // ignore the first time
delay(50);

}

void loop()
{

if(loop_cnt > 50) { // every 50 msecs get new data
loop_cnt = 0;

nunchuck_get data();

accx = nunchuck_accelx();

accy = nunchuck _accely();

buttons = nunchuck_zbutton() * 2;

buttons = buttons + nunchuck_cbutton(); // cbutton is least significant bit

Serial.print((byte)HEADER); // value indicating start of message
Serial.print((byte)accx);

Serial.print((byte)accy);

Serial.print((byte)buttons);

}

loop_cnt++;
delay(1);

The connections are shown in Recipe 13.2. Operation is similar to the PSX version,
except you use the Z button on the nunchuck instead of the Start button.

See Also

The Google Earth website contains the downloadable code and instructions needed to
get this going on your computer: http://earth.google.com/.

4.12 Logging Arduino Data to a File on Your Computer

Problem

You want to create a file containing information received over the serial port from
Arduino. For example, you want to save the values of the digital and analog pins at
regular intervals to a logfile.

Solution

We covered sending information from Arduino to your computer in previous recipes.
This solution uses the same Arduino code explained in Recipe 4.9. The Processing

4.12 Logging Arduino Data to a File on Your Computer | 121

http://earth.google.com/

sketch that handles file logging is based on the Processing sketch also described in that
recipe.

This Processing sketch creates a file (using the current date and time as the filename)
in a directory called Arduino. Messages received from Arduino are added to the file.
Pressing any key saves the file and exits the program:

ReceiveMultipleFieldsBinaryToFile P

based on ReceiveMultipleFieldsBinary, this version saves data to file

*
*

* portIndex must be set to the port connected to the Arduino
*

* Press any key to stop logging and save file

import processing.serial.*;

PrintWriter output;

DateFormat fnameFormat= new SimpleDateFormat("yyMMdd HHmm");
DateFormat timeFormat = new SimpleDateFormat("hh:mm:ss");
String fileName;

Serial myPort; // Create object from Serial class
short portIndex = 0; // select the com port, 0 is the first port
char HEADER = 'H';

void setup()

size(200, 200);

// Open whatever serial port is connected to Arduino.

String portName = Serial.list()[portIndex];

println(Serial.list());

printIln(" Connecting to -> " + Serial.list()[portIndex]);

myPort = new Serial(this, portName, 9600);

Date now = new Date();

fileName = fnameFormat.format(now);

output = createWriter(fileName + ".txt"); // save the file in the sketch folder

}

void draw()

int val;
String time;

if (myPort.available() >= 15) // wait for the entire message to arrive
if(myPort.read() == HEADER) // is this the header

String timeString = timeFormat.format(new Date());
println("Message received at " + timeString);
output.println(timeString);

// header found

// get the integer containing the bit values

val = readArduinoInt();

122 | Chapter4: Serial Communications

// print the value of each bit
for(int pin=2, bit=1; pin <= 13; pin++){
print("digital pin " + pin + " = ");
output.print("digital pin " + pin + " = ");
int isSet = (val & bit);
if(isSet == 0){
println("0");
output.println("0");

else {
println("1");
output.println("0");

bit = bit * 2; // shift the bit
}
// print the six analog values
for(int i=0; i < 6; i ++){
val = readArduinoInt();
println("analog port " + i + "= " + val);

output.println(“analog port " + i + "= " + val);
println("----");
output.println("----");
}
}

void keyPressed() {
output.flush(); // Writes the remaining data to the file
output.close(); // Finishes the file
exit(); // Stops the program

// return the integer value from bytes received on the serial port (in low,high

order)
int readArduinoInt()
{
int val; // Data received from the serial port
val = myPort.read(); // read the least significant byte

val = myPort.read() * 256 + val; // add the most significant byte
return val;

}

Don’t forget that you need to set portIndex to the serial port connected to Arduino.

Discussion

The base name for the logfile is formed using the DateFormat function in Processing:

DateFormat fnameFormat= new SimpleDateFormat("yyMMdd_HHmm");

The full filename is created with code that adds a directory and file extension:

output = createWriter(fileName + ".txt");

4.12 Logging Arduino Data to a File on Your Computer | 123

The file will be created in the same directory as the Processing sketch (the sketch needs
to be saved at least once to ensure that the directory exists). createlriter is the Pro-
cessing function that opens the file; this creates an object (a unit of runtime function-
ality) called output that handles the actual file output. The text written to the file is the
same as what is printed to the console in Recipe 4.9, but you can format the file contents
as required by using the standard string handling capabilities of Processing. For exam-
ple, the following variation on the draw routine produces a comma-separated file that
can be read by a spreadsheet or database. The rest of the Processing sketch can be the
same, although you may want to change the extension from .txt to .csv:

void draw()

int val;
String time;

if (myPort.available() »>= 15) // wait for the entire message to arrive
if(myPort.read() == HEADER) // is this the header
{
String timeString = timeFormat.format(new Date());
output.print(timeString);
val = readArduinoInt(); // read but don't output the digital values
// output the six analog values delimited by a comma

for(int i=0; i < 6; i ++){
val = readArduinoInt();

output.print("," + val);
output.println();

}
}

See Also

For more on createlriter, see hitp://processing.org/reference/createWriter_.html.

4.13 Sending Data to Two Serial Devices at the Same Time

Problem

You want to send data to a serial device such as a serial LCD, but you are already using
the built-in serial port to communicate with your computer.

Solution

On a Mega this is not a problem, as it has four hardware serial ports; just create two
serial objects and use one for the LCD and one for the computer:

124 | Chapter4: Serial Communications

http://processing.org/reference/createWriter_.html

void setup() {
// initialize two serial ports on a megal
Serial.begin(9600);
Seriall.begin(9600);

On a standard Arduino board (such as the Uno or Duemilanove) that only has one
hardware serial port, you will need to create an emulated or “soft” serial port.

You can use Mikal Hart’s NewSoftSerial, a serial port emulation library, available at
http://arduiniana.org/libraries/newsoftserial. Download and install NewSoftSerial.

W

The Arduino team is planning to provide NewSoftSerial with future
Arduino downloads. Check the release notes for your Arduino version
s to see if this software is already included.

Select two available digital pins, one each for transmit and receive, and connect your
serial device to them. Itis convenient to use the hardware serial port for communication
with the computer because this has a USB adapter on the board. Connect the device’s
transmit line to the receive pin and the receive line to the transmit pin. In Figure 4-5,
we have selected pin 2 as the receive pin and pin 3 as the transmit pin.

ooooooog mm:{ggu
r:_'aﬁ__g =] [=T et r&&
DIGITAL =

Arduino L o

% a b

—E Vin

‘ J £ Gnd

— :rﬂ =) .
- (O H5mEgs M Serial LCD

SN Dm[lil] 0o0000

Figure 4-5. Connecting a serial device to a “soft” serial port

In your sketch, create a NewSoftSerial object and tell it which pins you chose as your
emulated serial port. In this example, we’re creating an object named serial_lcd, which
we instruct to use pins 2 and 3:
/*
* NewSoftSerialOutput sketch
* Output data to a software serial port

*/

4.13 Sending Data to Two Serial Devices at the Same Time | 125

http://arduiniana.org/libraries/newsoftserial

#include <NewSoftSerial.h>

const int rxpin = 2; // pin used to receive from LCD
const int txpin = 3; // pin used to send to LCD
NewSoftSerial serial lcd(txpin, rxpin); // new serial port on pins 2 and 3

void setup()
{

Serial.begin(9600); // 9600 baud for the built-in serial port
serial lcd.begin(9600); //initialize the software serial port also for 9600

}

int number = 0;
void loop()

{

serial lcd.print("The number is "); // send text to the LCD

serial lcd.println(number); // print the number on the LCD
Serial.print("The number is ");

Serial.println(number); // print the number on the PC console

delay(500); // delay half second between numbers
number++; // to the next number

}

This sketch assumes that a serial LCD has been connected to pins 2 and 3 as shown in
Figure 4-5, and that a serial console is connected to the built-in port. The loop will
repeatedly display the same message on each:

The number is 0
The number is 1

Discussion

Every Arduino microcontroller contains at least one built-in serial port. This special
piece of hardware is responsible for generating the series of precisely timed pulses its
partner device sees as data and for interpreting the similar stream that it receives in
return. Although the Mega has four such ports, most Arduino flavors have only one.
For projects that require connections to two or more serial devices, you’ll need a soft-
ware library that emulates the additional ports. A “software serial” library effectively
turns an arbitrary pair of digital I/O pins into a new serial port.

Although one such library, SoftwareSerial, is included in every Arduino distribution,
most programmers prefer to use the more powerful and feature-laden NewSoftSerial
library. NewSoftSerial supports a wider range of baud rates and uses some advanced
features of the Arduino processor to ensure more reliable data reception. It also sup-
ports multiple simultaneous emulated ports. You can read more about NewSoftSerial
on Mikal Hart’s website.

Table 4-3 compares the features of the NewSoftSerial and SoftwareSerial libraries.

126 | Chapter4: Serial Communications

http://arduiniana.org/libraries/newsoftserial/

Table 4-3. Feature comparison of two emulation libraries

Feature NewSoftSerial SoftwareSerial
Distributed with Arduino software No? Yes

Max transmit baud rate 115.2K To about 9,600
Max receive baud rate 38.4K To about 9,600
Supports 8 MHz processors Yes No

Reliable interrupt-driven receives Yes No

Supports multiple emulated ports Yes No
.available() and .overflow() methods Yes N/A

2 Note that as of Arduino release 22, NewSoftSerial was available only as a third-party library, but future releases may include it with the
base distribution.

To build your software serial port, you select a pair of pins that will act as the port’s
transmit and receive lines in much the same way that pins 1 and 0 are controlled by
Arduino’s built-in port. In Figure 4-5, pins 3 and 2 are shown, but any available digital
pins can be used. It’s wise to avoid using 0 and 1, because these are already being driven
by the built-in port.

The syntax for writing to the soft port is identical to that for the hardware port. In the
example sketch, data is sent to both the “real” and emulated ports using print() and
println():

serial lcd.print("The number is "); // send text to the LCD

serial lcd.println(number); // send the number on the LCD
Serial.print("The number is "); // send text to the hardware port
Serial.println(number); // to output on Arduino Serial Monitor

If you are using a unidirectional serial device—that is, one that only sends or receives—
you can conserve resources by specifying a nonexistent pin number in the
NewSoftSerial constructor for the line you don’t need. For example, a serial LCD is
fundamentally an output-only device. If you don’t expect (or want) to receive data from
it, you can tell NewSoftSerial using this syntax:

#include <NewSoftSerial.h>
const int no_such_pin = 255;

const int txpin = 3;
NewSoftSerial serial lcd(txpin, no_such_pin); // TX-only on pin 3

In this case, we would only physically connect a single pin (3) to the serial LCD’s “input”
or “RX” line.

4.13 Sending Data to Two Serial Devices at the Same Time | 127

4.14 Receiving Serial Data from Two Devices at the Same Time

Problem

You want to receive data from a serial device such as a serial GPS, but you are already
using the built-in serial port to communicate with your computer.

Solution

This problem is similar to the preceding one, and indeed the solution is much the same.
Ifyour Arduino’s serial port is connected to the console and you want to attach a second
serial device, you must create an emulated port using a software serial library such as
NewSoftSerial. In this case, we will be receiving data from the emulated port instead
of writing to it, but the basic solution is very similar.

Download NewSoftSerial from Mikal Hart’s website. Select two pins to use as your
transmit and receive lines.

Connect your GPS as shown in Figure 4-6. Rx (receive) is not used in this example, so
you can ignore the Rx connection to pin 3 if your GPS does not have a receive pin.

00000000 [I]D[I]DD£

DIGITAL 0=

(I

=m
=T
=]

AREF

Arduino

53

— P L O
o=
=

=
=5

ANALOG EM-406A

0 e O = Ly

~
_
D)
S
CJRESET
E1E]
5V
Gnd
Gnd
Vin

Figure 4-6. Connecting a serial GPS device to a “soft” serial port

Asyoudid in Recipe 4.13, create a NewSoftSerial object in your sketch and tell it which
pins to control. In the following example, we define a soft serial port called
serial_gps, using pins 2 and 3 for receive and transmit, respectively:

/*

* NewSoftSeriallInput sketch

* Read data from a software serial port

*/

128 | Chapter4: Serial Communications

http://arduiniana.org/libraries/newsoftserial

#include <NewSoftSerial.h>

const int rxpin = 2; // pin used to receive from GPS
const int txpin = 3; // pin used to send to GPS
NewSoftSerial serial gps(txpin, rxpin); // new serial port on pins 2 and 3

void setup()

Serial.begin(9600); // 9600 baud for the built-in serial port
serial gps.begin(4800); // initialize the port, most GPS devices use 4800 baud

void loop()
{
if (serial_gps.available() > 0) // any character arrived yet?

char ¢ = serial gps.read(); // if so, read it from the GPS
Serial.print(c, BYTE); // and echo it to the serial console
}
}

This short sketch simply forwards all incoming data from the GPS to the Arduino Serial
Monitor. If the GPS is functioning and your wiring is correct, you should see GPS data
displayed on the Serial Monitor.

Discussion

You initialize an emulated NewSoftSerial port by providing pin numbers for transmit
and receive. The following code will set up the port to send on pin 2 and receive on
pin 3:

const int rxpin = 2; // pin used to receive from GPS

const int txpin = 3; // pin used to send to GPS
NewSoftSerial serial gps(txpin, rxpin); // new serial port on pins 2 and 3

The syntax for reading an emulated port is very similar to that for reading from a built-
in port. First check to make sure a character has arrived from the GPS with
available(), and then read it with read().

It’s important to remember that software serial ports consume time and resources. An
emulated serial port must do everything that a hardware port does, using the same
processor your sketch is trying to do “real work” with. Whenever a new character
arrives, the processor must interrupt whatever it was doing to handle it. This can be
time-consuming. At 4,800 baud, for example, it takes the Arduino about two
milliseconds to process a single character. While two milliseconds may not sound like
much, consider that if your peer device—say, the GPS unit shown earlier—transmits
200 to 250 characters per second, your sketch is spending 40 to 50 percent of its time
trying to keep up with the serial input. This leaves very little time to actually process all
that data. The lesson is that if you have two serial devices, when possible connect the
one with the higher bandwidth consumption to the built-in (hardware) port. If you
must connect a high-bandwidth device to a software serial port, make sure the rest of
your sketch’s loop is very efficient.

4.14 Receiving Serial Data from Two Devices at the Same Time | 129

Receiving data from multiple NewSoftSerial ports

With NewSoftSerial (but not SoftwareSerial), it is possible to create multiple “soft”
serial ports in the same sketch. This is a useful way to control, say, several XBee radios
in the same project. The caveat is that at any given time, only one of these ports can
actively receive data. Reliable reception on a software port requires the processor’s
undivided attention. That’s why NewSoftSerial can only activate one port for data re-
ception at a given time. (This restriction does not apply to sending data, only receiving
it. See the NewSoftSerial documentation for specifics.)

It is possible to receive on two different NewSoftSerial ports in the same sketch. You
just have to take some care that you aren’t trying to receive from both at the same time.
There are many successful designs which, say, monitor a serial GPS device for a while,
then later in the sketch accept input from an XBee. The key is to alternate between
them. NewSoftSerial considers the “active” port to be whichever port you have most
recently accessed using the read, print, println, or available method. The following
code fragment illustrates how you design a sketch to read first from one port and then
from another:
/*
* MultiRX sketch
* Receive data from two software serial ports

*/

#include <NewSoftSerial.h>
const int rxpini = 2;
const int txpini = 3;
const int rxpin2 =
const int txpin2 = 5;

NewSoftSerial gps(txpini, rxpini); // gps device connected to pins 2 and 3
NewSoftSerial xbee(txpin2, rxpin2); // gps device connected to pins 2 and 3

1
~
b

void setup()

gps.begin(4800);
xbee.begin(9600);
}

void loop()
{

if (xbee.available() > 0) // xbee is active. Any characters available?

{

if (xbee.read() == 'y') // if xbee received a 'y' character

unsigned long start = millis(); // begin listening to the GPS
while (start + 100000 > millis())
// listen for 10 seconds

130 | Chapter4: Serial Communications

{

if (gps.available() > 0) // now gps device is active

char ¢ = gps.read();
// *** process gps data here

This sketch is designed to treat the XBee radio as the active port until it receives a
y character, at which point the GPS becomes active. After processing GPS data for
10 seconds, the sketch once again returns to listening to the XBee port. Data that arrives
on an inactive port is simply discarded.

Note that the “active port” restriction only applies to multiple soft ports. If your design
really must receive data from more than one serial device simultaneously, consider
attaching one of these to the built-in hardware port. Alternatively, it is perfectly possible
to add additional hardware ports to your projects using external chips, devices called
UARTs:.

4.15 Setting Up Processing on Your Computer to Send
and Receive Serial Data

Problem

You want to use the Processing development environment to send and receive serial
data.

Solution

You can get the Processing application from the Downloads section of the Processing
website, http://processing.org. Files are available for each major operating system.
Download the appropriate one for your operating system and unzip the file to some-
where that you normally store applications. On a Windows computer, this might be a
location like C:\Program Files\Processing\. On a Mac, it might be something
like /Applications/Processing/.

If you installed Processing on the same computer that is running the Arduino IDE, the
only other thing you need to do is identify the serial port in Processing. The following
Processing sketch prints the serial ports available:

/**

* GettingStarted
*

* A sketch to list the available serial ports
* and display characters received

*/

4.15 Setting Up Processing on Your Computer to Send and Receive Serial Data | 131

http://processing.org

import processing.serial.*;

Serial myPort; // Create object from Serial class
int portIndex = 0; // set this to the port connected to Arduino
int val; // Data received from the serial port

void setup()

size(200, 200);

println(Serial.list()); // print the list of all the ports
println(" Connecting to -> " + Serial.list()[portIndex]);
myPort = new Serial(this, Serial.list()[portIndex], 9600);

}

void draw()

{
if (myPort.available() > 0) // If data is available,

val = myPort.read(); // read it and store it in val
print(val);

}

If you are running Processing on a computer that is not running the Arduino develop-
ment environment, you need to install the Arduino USB drivers (Chapter 1 describes
how to do this).

Set the variable portIndex to match the port used by Arduino. You can see the port
numbers printed in the Processing text window (the area below the source code, not
the separate Display window; see hitp://processing.org/reference/environment).
Recipe 1.4 describes how to find out which serial port your Arduino board is using.

132 | Chapter4: Serial Communications

http://processing.org/reference/environment

CHAPTER 5
Simple Digital and Analog Input

5.0 Introduction

The Arduino’s ability to sense digital and analog inputs allows it to respond to you and
to the world around you. This chapter introduces techniques you can use to do useful
things with these inputs. This is the first of many chapters to come that cover electrical
connections to Arduino. If you don’t have an electronics background, you may want
to look through Appendix A on electronic components, Appendix B on schematic di-
agrams and data sheets, Appendix C on building and connecting circuits, and Appen-
dix E on hardware troubleshooting. In addition, many good introductory tutorials are
available covering electronics. Two that are particularly relevant to Arduino are Getting
Started with Arduino by Massimo Banzi (O’Reilly) and Making Things Talk by Tom
Igoe (O’Reilly). Other books offering a background on electronics topics covered in
this and the following chapters include Getting Started in Electronics by Forrest Mims
(Master Publishing) and Physical Computing by Tom Igoe (Cengage).

If wiring components to your Arduino is new to you, be careful about
“5’@ how you connect and power the things you attach. Arduino uses a ro-

bust controller chip that can take a fair amount of abuse, but you can
damage the chip if you connect the wrong voltages or short-circuit an
output pin. Most Arduino controller chips are powered by 5 volts, and
you must not connect external power to Arduino pins with a higher
voltage than this (or 3.3 volts if your Arduino controller runs on this
voltage).

Arduino boards that are aimed at beginners have the main chip in a
socket that can be removed and replaced, so you don’t need to replace
the whole board if you damage the chip.

Figure 5-1 shows the arrangement of pins on a standard Arduino board. See http://www
.arduino.cc/en/Main/Hardware for a list of all the official boards along with links to
connection information for each. If your board is not on that list, check your board
supplier’s website for connection information.

133

http://oreilly.com/catalog/9780596155520/
http://oreilly.com/catalog/9780596155520/
http://oreilly.com/catalog/0636920010920/
http://www.arduino.cc/en/Main/Hardware
http://www.arduino.cc/en/Main/Hardware

Q000000 00000000
2 R — =
e
Arduino
EI —_—
. © o)
- N - ANALOG
() EBR233f o
U ooooon ocoooog

Figure 5-1. Standard Arduino board

This chapter covers the Arduino pins that can sense digital and analog inputs. Digital
input pins sense the presence and absence of voltage on a pin. Analog input pins meas-
ure a range of voltages on a pin.

The Arduino function to detect digital input is digitalRead and it tells your sketch if a
voltage on a pin is HIGH (5 volts) or LOW (0 volts). The Arduino function to configure a
pin for reading input is pinMode(pin, INPUT).

On a typical board, there are 14 digital pins (numbered 0 to 13) as shown at the top of
Figure 5-1. Pins 0 and 1 (marked RX and TX) are used for the USB serial connection
and should be avoided for other uses. If you need more digital pins on a standard board,
you can use the analog pins as digital pins (analog pins 0 through 5 can be used as
digital pins 14 through 19).

The Mega board has many more digital and analog pins. Digital pins 0 through 13 and
analog pins 0 through 5 are located in the same place as on the standard board so that
hardware shields designed for the standard board can fit onto a Mega. As with the
standard board, you can use analog pins as digital pins, but with the Mega, analog pins
0 through 15 are digital pin numbers 54 through 69. Figure 5-2 shows the Mega pin
layout.

Most boards have an LED connected to pin 13, and some of the recipes use this as an
output indicator. If your board does not have an LED on pin 13, skip ahead to Rec-
ipe 7.1 if you need help connecting an LED to a digital pin.

Recipes covering digital input sometimes use external resistors to provide the voltage
that is sensed by digitalRead. These resistors are called pull-up resistors (so named
because the voltage is “pulled up” to the 5V line that the resistor is connected to) or

134 | Chapter5: Simple Digital and Analog Input

DD[IDDDD [DD[I]DCI] 00000000 Gnd(03
EomNC So® ~olname Xoe=2agn 200
== ;PWMandDIGML—/ ;5:2:;5; ié 8
“—— Communication — 2200

[LED 300003
. 0033

_, 340035

- = 337

o0 Ezs 39

o0 e el

2008

L e ol

. Itie ol

Arduino Mega e ok

s0000)51

- S MME N ——— e

222335 . om maSCNMTI endtend

000000 DDUEDDD 00000000

Figure 5-2. Arduino Mega board

pull-down resistors (the voltage is “pulled down” to 0 volts). Although 10K ohms is a
commonly used value, anything between 4.7K and 20K or more will work; see Appen-
dix A for more information about the components used in this chapter.

Unlike a digital value, which is only on or off, analog values are continuously variable.
The volume setting of a device is a good example; it is not just on or off, but it can have
arange of values in between. Many sensors provide information by varying the voltage
to correspond to the sensor measurement. Arduino code uses a function called
analogRead to get a value proportional to the voltage it sees on one of its analog pins.
The value will be 0 if there are 0 volts on the pin and 1,023 for 5 volts. The value in
between will be proportional to the voltage on the pin, so 2.5 volts (half of 5 volts) will
result in a value of roughly 511 (half of 1,023). You can see the six analog input pins
(marked 0 to 5) at the bottom of Figure 5-1 (these pins can also be used as digital pins
14 to 19 if they are not needed for analog). Some of the analog recipes use a potenti-
ometer (pot for short, also called a variable resistor) to vary the voltage on a pin. When
choosing a potentiometer, a value of 10K is the best option for connecting to analog
pins.

Although most of the circuits in this chapter are relatively easy to connect, you may
want to consider getting a solderless breadboard to simplify your wiring to external
components: some choices are the Jameco 20723 (two bus rows per side); RadioShack
276-174 (one bus row per side); Digi-Key 438-1045-ND; and SparkFun PRT-00137.

Another handy item is an inexpensive multimeter. Almost any will do, as long as it can
measure voltage and resistance. Continuity checking and current measurement are nice
additional features to have. (The Jameco 220812, RadioShack 22-810, and SparkFun
TOL-00078 offer these features.)

5.0 Introduction | 135

5.1 Using a Switch

Problem

You want your sketch to respond to the closing of an electrical contact; for example, a
pushbutton or other switch or an external device that makes an electrical connection.

Solution

Use digitalRead to determine the state of a switch connected to an Arduino digital pin
set as input. The following code lights an LED when a switch is pressed (Figure 5-3
shows how it should be wired up):

/*
Pushbutton sketch
a switch connected to pin 2 lights the LED on pin 13
*/
const int ledPin = 13; // choose the pin for the LED
const int inputPin = 2; // choose the input pin (for a pushbutton)
void setup() {
pinMode(ledPin, OUTPUT); // declare LED as output
pinMode(inputPin, INPUT); // declare pushbutton as input

void loop(){
int val = digitalRead(inputPin); // read input value
if (val == HIGH) // check if the input is HIGH
digitalWrite(ledPin, HIGH); // turn LED on if switch is pressed

else

digitalWrite(ledPin, LOW); // turn LED off

Standard Arduino boards have a built-in LED connected to pin 13. If
your board does not, see Recipe 7.1 for information on connecting an
98¢ LED to an Arduino pin.

Discussion
The setup function configures the LED pin as OUTPUT and the switch pin as INPUT.

136 | Chapter5: Simple Digital and Analog Input

Arduino

- /_ | d__\-.\l
. S

o 0|
0o
oo

| | | s

=
A 0 coo

Figure 5-3. Switch connected using pull-down resistor

W

The digitalRead function monitors the voltage on the input pin (inputPin), and it re-
turns a value of HIGH if the voltage is high (5 volts) and LOW if the voltage is low (0 volts).
Actually, any voltage that is greater than 2.5 volts (half of the voltage powering the
chip) is considered HIGH and less than this is treated as LOW. If the pin is left unconnected
(known as floating) the value returned from digitalRead is indeterminate (it may be
HIGH or LOW, and it cannot be reliably used). The resistor shown in Figure 5-3 ensures
that the voltage on the pin will be low when the switch is not pressed, because the
resistor “pulls down” the voltage to ground. When the switch is pushed, a connection
is made between the pin and +5 volts, so the value on the pin interpreted by digital

A pin must be set to OUTPUT mode for digitallrite to control the pin’s
output voltage. It must be in INPUT mode to read the digital input.

Read changes from LOW to HIGH.

=

Do not connect a digital or analog pin to a voltage higher than 5 volts
(or 3.3 volts on a 3.3V board). This can damage the pin and possibly
destroy the entire chip. Also, make sure you don’t wire the switch so
that it shorts the 5 volts to ground (without a resistor). Although this
may not damage the Arduino chip, it is not good for the power supply.

5.1 Usinga Switch | 137

In this example, the value from digitalRead is stored in the variable val. This will be
HIGH if the button is pressed, LOW otherwise.

W

The switch used in this example (and almost everywhere else in this

book) makes electrical contact when pressed and breaks contact when

% not pressed. These switches are called Normally Open (NO); see this

" book’s website for part numbers. The other kind of momentary switch
is called Normally Closed (NC).

The output pin connected to the LED is turned on when you set val to HIGH, illuminating
the LED.

Although Arduino sets all digital pins as inputs by default, it is a good practice to set
this explicitly in your sketch to remind yourself about the pins you are using.

You may see similar code that uses true instead of HIGH; these can be used interchange-
ably (they are also sometimes represented as 1). Likewise, false is the same as LOW and
0. Use the form that best expresses the meaning of the logic in your application.

Almost any switch can be used, although the ones called momentary tactile switches are
popular because they are inexpensive and can plug directly into a breadboard. See the
website for this book for some supplier part numbers.

Here is another way to implement the logic in the preceding sketch:

void loop()
{

digitalWrite(ledPin, digitalRead(inputPin)); // turn LED ON if input pin is
HIGH, else turn OFF
}

This doesn’t store the button state into a variable. Instead, it sets the LED on or off
directly from the value obtained from digitalRead. It is a handy shortcut, but if you
find it overly terse, there is no practical difference in performance, so pick whichever
form you find easier to understand.

The pull-up code is similar to the pull-down version, but the logic is reversed: the value
on the pin goes LOW when the button is pressed (see Figure 5-4 for a schematic diagram
of this). It may help to think of this as pressing the switch DOWN, causing the output to
g0 LOW:

void loop()
{

int val = digitalRead(inputPin); // read input value
if (val == HIGH) // check if the input is HICH

digitalWrite(ledPin, LOW); // turn LED OFF

138 | Chapter5: Simple Digital and Analog Input

http://oreilly.com/catalog/9780596802486/
http://oreilly.com/catalog/9780596802486/
http://oreilly.com/catalog/9780596802479/

else

digitalWrite(ledPin, HIGH); // turn LED ON

Arduino

o 0|
0o

00 L
10K <
‘ L‘ Ohm 2
- |/_\ |/d“h\| g% R E E ':E- (=] .?—Nil:oi =+
NN ojjecceee

Figure 5-4. Switch connected using pull-up resistor

See Also

The Arduino reference for digitalRead: http://arduino.cc/en/Reference/DigitalRead
The Arduino reference for digitalWrite: http://arduino.cc/en/Reference/Digital Write
The Arduino reference for pinMode: http://arduino.cc/en/Reference/PinMode

The Arduino references for constants (HIGH, LOW, etc.): http://arduino.cc/en/Reference/
Constants

Arduino tutorial on digital pins: http://arduino.cc/en/Tutorial/Digital Pins

5.2 Using a Switch Without External Resistors

Problem

You want to simplify your wiring by eliminating external pull-up resistors when con-
necting switches.

5.2 Using a Switch Without External Resistors | 139

http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Tutorial/DigitalPins

Solution

Asexplained in Recipe 5.1, digital inputs must have a resistor to hold the pin to a known
value when the switch is not pressed. Arduino has internal pull-up resistors that can
be enabled by writing a HIGH value to a pin that is in INPUT mode (the code for this is
shown in Recipe 5.1).

For this example, the switch is wired as shown in Figure 5-5. This is almost exactly the
same as Figure 5-4, but without an external resistor.

00000000p00000000
£5 DIGITAL =&
)
Arduino o
[sNe] J_
- () Bzazzs ML
N om0 oo

Figure 5-5. Switch wired for use with internal pull-up resistor

The switch is only connected between pin 2 and Gnd. Gnd is short for ground and is
at 0 volts by definition:
/*
Pullup sketch
a switch connected to pin 2 lights the LED on pin 13

*/
const int ledPin = 13; // output pin for the LED
const int inputPin = 2; // input pin for the switch

void setup() {
pinMode(ledPin, OUTPUT);
pinMode(inputPin, INPUT);
digitalWrite(inputPin,HIGH); // turn on internal pull-up on the inputPin

140 | Chapter5: Simple Digital and Analog Input

}

void loop(){
int val = digitalRead(inputPin); // read input value
if (val == HIGH) // check if the input is HIGH
digitalWrite(ledPin, HIGH); // turn LED OFF

else

digitalWrite(ledPin, LOW); // turn LED ON
}

There are a few Gnd pins on an Arduino board; they are all connected,
so pick whichever is convenient.

Discussion

You enable internal pull-up resistors by writing a HIGH value to a pin in input mode.
Using digitalWrite(pin, HICH) on a pin in input mode may not be intuitive at first,
but you’ll soon get used to it. You can turn the pull-up off by writing a LOW value to the
pin.

If your application switches the pin mode back and forth between input and output,
bear in mind that the state of the pin will remain HICH or LOW when you change modes.
In other words, if you have set an output pin HIGH and then change to input mode, the
pull-up will be on, and reading the pin will produce a HIGH. If you set the pin LOW in
output mode with digitalWrite(pin, LOW) and then change to input mode with pin
Mode(pin, INPUT), the pull-up will be off. If you turn a pull-up on, changing to output
mode will set the pin HIGH, which could, for example, unintentionally light an LED
connected to it.

The internal pull-up resistors are 20K ohms. This is suitable for most applications, but
some devices may require lower-value resistors—see the data sheet for external devices
you want to connect to Arduino to see if the internal pull-ups are suitable or not.

5.3 Reliably Detecting the Closing of a Switch

Problem

You want to avoid false readings due to contact bounce (contact bounce produces spu-
rious signals at the moment the switch contacts close or open). The process of elimi-
nating spurious readings is called debouncing.

5.3 Reliably Detecting the Closing of a Switch | 141

Solution

There are many ways to solve this problem; here is one using the wiring shown in
Figure 5-3 from Recipe 5.1:
/*
Debounce sketch

a switch connected to pin 2 lights the LED on pin 13
debounce logic prevents misreading of the switch state

*/
const int inputPin = 2; // the number of the input pin
const int ledPin = 13; // the number of the output pin

const int debounceDelay = 10; // milliseconds to wait until stable

// debounce returns true if the switch in the given pin is closed and stable
boolean debounce(int pin)
{

boolean state;

boolean previousState;

previousState = digitalRead(pin); // store switch state
for(int counter=0; counter < debounceDelay; counter++)
{

delay(1); // wait for 1 millisecond

state = digitalRead(pin); // read the pin
if(state != previousState)

{

counter = 0; // reset the counter if the state changes
previousState = state; // and save the current state

}

// here when the switch state has been stable longer than the debounce period

return state;

}

void setup()
pinMode(inputPin, INPUT);

pinMode(ledPin, OUTPUT);
}

void loop()
if(debounce(inPin))
digitalWrite(outPin, HICH);

}

The debounce function is called (used) with the pin number of the switch you want to
debounce; the function returns true if the switch is pressed and stable. It returns
false if it is not pressed or not yet stable.

142 | Chapter5: Simple Digital and Analog Input

Discussion

The debounce method checks to see if it gets the same reading from the switch after a
delay that needs to be long enough for the switch contacts to stop bouncing. You may
require longer intervals for “bouncier” switches (some switches can require as much as
50 ms or more). The function works by repeatedly checking the state of the switch for
as many milliseconds as defined in the debounce time. If the switch remains stable for
this time, the state of the switch will be returned (true if pressed and false if not). If
the switch state changes within the debounce period, the counter is reset so that the
checks start over until the switch state does not change within the debounce time.

If your wiring uses pull-up resistors instead of pull-down resistors (see Recipe 5.2) you
need to invert the value returned from the debounce function, because the state goes
LOW when the switch is pressed using pull-ups, but the function should return true
(true is the same as HIGH) when the switch is pressed. The debounce code using pull-
ups is as follows; only the last four lines (highlighted) are changed from the previous
version:

boolean debounce(int pin)

{

boolean state;
boolean previousState;

previousState = digitalRead(pin); // store switch state
for(int counter=0; counter < debounceDelay; counter++)
{

delay(1); // wait for 1 millisecond

state = digitalRead(pin); // read the pin
if(state != previousState)

{

counter = 0; // reset the counter if the state changes
previousState = state; // and save the current state

}

// here when the switch state has been stable longer than the debounce period
if(state == LOW) // LOW means pressed (because pull-ups are used)
return true;
else
return false;
}

For testing, you can add a count variable to display the number of presses. If you view
this on the Serial Monitor (see Chapter 4), you can see whether it increments once per
press. Increase the value of debounceDelay until the count keeps step with the presses.
The following fragment prints the value of count when used with the debounce function
shown earlier:

int count; // add this variable to store the number of presses
void setup()
{

pinMode(inPin, INPUT);

5.3 Reliably Detecting the Closing of a Switch | 143

pinMode(outPin, OUTPUT);
Serial.begin(9600); // add this to the setup function

}

void loop()
if(debounce(inPin))

digitalWrite(outPin, HICH);
count++; // increment count
Serial.println(count); // display the count on the Serial Monitor
}
}

This debounce() function will work for any number of switches, but you must ensure
that the pins used are in input mode.

A potential disadvantage of this method for some applications is that from the time the
debounce function is called, everything waits until the switch is stable. In most cases
this doesn’t matter, but your sketch may need to be attending to other things while
waiting for your switch to stabilize. You can use the code shown in Recipe 5.4 to over-
come this problem.

See Also

See the Debounce example sketch distributed with Arduino. From the File menu, select
Examples—Digital-Debounce.

5.4 Determining How Long a Switch Is Pressed

Problem

Your application wants to detect the length of time a switch has been in its current
state. Or you want to increment a value while a switch is pushed and you want the rate
to increase the longer the switch is held (the way many electronic clocks are set). Or
you want to know if a switch has been pressed long enough for the reading to be stable
(see Recipe 5.3).

Solution

The following sketch demonstrates the setting of a countdown timer. The wiring is the
same as in Figure 5-5 from Recipe 5.2. Pressing a switch sets the timer by incrementing
the timer count; releasing the switch starts the countdown. The code debounces the
switch and accelerates the rate at which the counter increases when the switch is held
for longer periods. The timer count is incremented by one when the switch is initially
pressed (after debouncing). Holding the switch for more than one second increases the
increment rate by four; holding the switch for four seconds increases the rate by ten.

144 | Chapter5: Simple Digital and Analog Input

Releasing the switch starts the countdown, and when the count reaches zero, a pin is

set HIGH (in this example, lighting an LED):
/*
SwitchTime sketch
Countdown timer that decrements every tenth of a second
lights an LED when 0
Pressing button increments count, holding button down increases
rate of increment

*/

const int ledPin = 13; // the number of the output pin
const int inPin = 2; // the number of the input pin

const int debounceTime = 20; // the time in milliseconds required
for the switch to be stable

const int fastIncrement = 1000; // increment faster after this many
milliseconds

const int veryFastIncrement = 4000; // and increment even faster after
this many milliseconds

int count = 0; // count decrements every tenth of a
second until reaches 0

void setup()

pinMode(inPin, INPUT);

digitalWrite(inPin, HIGH); // turn on pull-up resistor
pinMode(ledPin, OUTPUT);

Serial.begin(9600);

void loop()
{

int duration = switchTime();

if(duration > veryFastIncrement)
count = count + 10;

else if (duration > fastIncrement)
count = count + 4;

else if (duration > debounceTime)
count = count + 1;

else
{
// switch not pressed so service the timer
if(count == 0)
digitalWrite(ledPin, HICH); // turn the LED on if the count is 0
else

digitalWrite(ledPin, LOW); // turn the LED off if the count is not 0
count = count - 1; // and decrement the count
}
}

5.4 Determining How Long a Switch Is Pressed | 145

Serial.println(count);
delay(100);

// return the time in milliseconds that the switch has been in pressed (LOW)
long switchTime()

// these variables are static - see Discussion for an explanation

static unsigned long startTime = 0; // the time the switch state change was
first detected

static boolean state; // the current state of the switch

if(digitalRead(inPin) != state) // check to see if the switch has changed state
{

state = | state; // yes, invert the state
startTime = millis(); // store the time

}
if(state == LOW)
return millis() - startTime; // switch pushed, return time in milliseconds
else
return 0; // return 0 if the switch is not pushed (in the HIGH state);
}

Discussion

The heart of this recipe is the switchTime function. This returns the number of milli-
seconds that the switch has been pressed. Because this recipe uses internal pull-up
resistors (see Recipe 5.2), the digitalRead of the switch pin will return LOW when the
switch is pressed.

The loop checks the value returned from switchTime to see what should happen. If the
time the switch has been held down is long enough for the fastest increment, the counter
is incremented by that amount; if not, it checks the fast value to see if that should be
used; if not, it checks if the switch has been held down long enough to stop bouncing
and if so, it increments a small amount. At most, one of those will happen. If none of
them are true, the switch is not being pressed, or it has not been pressed long enough
to have stopped bouncing. The counter value is checked and an LED is turned on if it
is zero; if it’s not zero, the counter is decremented and the LED is turned off.

You can use the switchTime function just for debouncing a switch. The following code
handles debounce logic by calling the switchTime function:

const int debounceTime = 20; // the time in milliseconds that the switch
needs to be stable

if(switchTime() > debounceTime);
Serial.print("switch is debounced");

This approach to debouncing can be handy if you have more than one switch, because
you can peek in and look at the amount of time a switch has been pressed and process
other tasks while waiting for a switch to become stable. To implement this, you need
to store the current state of the switch (pressed or not) and the time the state last

146 | Chapter5: Simple Digital and Analog Input

changed. There are many ways to do this—in this example, you will use a separate
function for each switch. You could store the variables associated with all the switches
at the top of your sketch as global variables (called “global” because they are accessible
everywhere). But it is more convenient to have the variables for each switch contained
with the function.

Retaining values of variables defined in a function is achieved by using static varia-
bles. Static variables within a function provide permanent storage for values that must
be maintained between function calls. A value assigned to a static variable is retained
even after the function returns. The last value set will be available the next time the
function is called. In that sense, static variables are similar to the global variables (var-
iables declared outside a function, usually at the beginning of a sketch) that you saw
in the other recipes. But unlike global variables, static variables declared in a function
are only accessible within that function. The benefit of static variables is that they
cannot be accidentally modified by some other function.

This sketch shows an example of how you can add separate functions for different
switches. The wiring for this is similar to Recipe 5.2, with the second switch wired
similarly to the first (as shown in Figure 5-5) but connected between pin 3 and Gnd:

/*

SwitchTimeMultiple sketch

Prints how long more than one switch has been pressed

*/

const int switchAPin = 2; // the pin for switch A
const int switchBPin = 3; // the pin for switch B

// functions with references must be explicitly declared
unsigned long switchTime(int pin, boolean &state, unsigned long &startTime);

void setup()

pinMode(switchAPin, INPUT);
digitalWrite(switchAPin, HIGH); // turn on pull-up resistors
pinMode(switchBPin, INPUT);
digitalWrite(switchBPin, HIGH); // turn on pull-up resistors
Serial.begin(9600);

}

void loop()
unsigned long time;

Serial.print("switch A time =");
time = switchATime();
Serial.print(time);

Serial.print(", switch B time =");
time = switchBTime();
Serial.println(time);

delay(1000);

5.4 Determining How Long a Switch Is Pressed | 147

}

unsigned long switchTime(int pin, boolean &state, unsigned long &startTime)
if(digitalRead(pin) != state) // check to see if the switch has changed state

state = | state; //yes, invert the state
startTime = millis(); // store the time

}
if(state == LOW)

return millis() - startTime; // return the time in milliseconds
else

return 0; // return 0 if the switch is not pushed (in the HIGH state);

long switchATime()

// these variables are static - see text for an explanation

static unsigned long startTime = 0; // the time the switch state change was
first detected

static boolean state; // the current state of the switch

return switchTime(switchAPin, state, startTime);

}
long switchBTime()

// these variables are static - see text for an explanation

static unsigned long startTime = 0; // the time the switch state change was
first detected

static boolean state; // the current state of the switch

return switchTime(switchBPin, state, startTime);

}

The time calculation is performed in a function called switchTime(). This function
examines and updates the switch state and duration. The function uses references to
handle the parameters—references were covered in Recipe 2.11. A function for each
switch (switchATime() and switchBTime()) is used to retain the start time and state for
each switch. Because the variables holding the values are declared as static, the values
will be retained when the functions exit. Holding the variables within the function
ensures that the wrong variable will not be used. The pins used by the switches are
declared as global variables because the values are needed by setup to configure the
pins. But because these variables are declared with the const keyword, the compiler
will not allow the values to be modified, so there is no chance that these will be acci-
dentally changed by the sketch code.

Limiting the exposure of a variable becomes more important as projects become more
complex. The Arduino environment provides a more elegant way to handle this; see
Recipe 16.4 for a discussion on how to implement this using classes.

148 | Chapter5: Simple Digital and Analog Input

5.5 Reading a Keypad

Problem

You have a matrix keypad and want to read the key presses in your sketch. For example,
you have a telephone-style keypad similar to the SparkFun 12-button keypad (Spark-
Fun COM-08653).

Solution

Wire the rows and columns from the keypad connector to the Arduino, as shown in
Figure 5-6.

sV
Gnd
Gnd
Vin 7 8 9

RE?EE a5 1]6}—

100 -
'Q fan)
8 Col 1 —T
2 7
]

)OO

)
-
H.h.

7 Row 0
6 Row 3
5 Col 0
4 Col 2
33— Row 2 —

23— How 1
™ _|

o= ——C O 0 =
|
I

RXo

Figure 5-6. Connecting the SparkFun keyboard matrix

If you’ve wired your Arduino and keypad as shown in Figure 5-6, the following sketch
will print key presses to the Serial Monitor:
/*
Keypad sketch
prints the key pressed on a keypad to the serial port

*/
const int numRows = 4; // number of rows in the keypad
const int numCols = 3; // number of columns

const int debounceTime = 20; // number of milliseconds for switch to be stable

5.5 Reading a Keypad | 149

// keymap defines the character returned when the corresponding key is pressed
const char keymap[numRows][numCols] = {

{2, "2, '3"),
{'a, 's5', 6" 1},
{'7, '8, "9" },
{'*', o', #)

// this array determines the pins used for rows and columns
const int rowPins[numRows] = { 7, 2, 3, 6 }; // Rows 0 through 3
const int colPins[numCols] = { 5, 8, 4 }; // Columns 0 through 2

void setup()
{

Serial.begin(9600);
for (int row = 0; row < NUMROWS; YOw++)

{
pinMode (rowPins[row],INPUT); // Set row pins as input
digitalWrite(rowPins[row],HIGH); // turn on Pull-ups

}

for (int column = 0; column < numCols; column++)

{

pinMode(colPins[column],OUTPUT); // Set column pins as outputs for writing
digitalWrite(colPins[column],HIGH); // Make all columns inactive

}
void loop()
{

char key = getKey();

if(key != 0) { // if the character is not 0 then it's a valid key press
Serial.print("Got key ");
Serial.println(key);

}

// returns with the key pressed, or 0 if no key is pressed
char getKey()
{

char key = 0; // 0 indicates no key pressed
for(int column = 0; column < numCols; column++)

digitalWrite(colPins[column],LOW); // Activate the current column.
for(int row = 0; row < numRows; YOwW++) // Scan all rows for a key press.

if(digitalRead(rowPins[row]) == LOW) // Is a key pressed?

delay(debounceTime); // debounce
while(digitalRead(rowPins[row]) == LOW)

H // wait for key to be released
key = keymap[row][column]; // Remember which key was pressed.

150 | Chapter5: Simple Digital and Analog Input

digitalWrite(colPins[column],HIGH); // De-activate the current column.

return key; // returns the key pressed or 0 if none

}

This sketch will only work correctly if the wiring agrees with the code. Table 5-1 shows
how the rows and columns should be connected to Arduino pins. If you are using a
different keypad, check your data sheet to determine the row and column connections.
Check carefully, as incorrect wiring can short out the pins, and that could damage your
controller chip.

Table 5-1. Mapping of Arduino pins to SparkFun connector and keypad rows and columns

Arduino pin Keypad connector Keypad row/column
2 7 Row 1

3 6 Row 2

4 5 Column 2

5 4 Column 0

6 3 Row 3

7 2 Row 0

8 1 Column 1

Discussion

Matrix keypads typically consist of Normally Open switches that connect a row with
a column when pressed. (A Normally Open switch only makes electrical connection
when pushed.) Figure 5-6 shows how the internal conductors connect the button rows
and columns to the keyboard connector. Each of the four rows is connected to an input
pin and each column is connected to an output pin. The setup function sets the pin
modes and enables pull-up resistors on the input pins (see the pull-up recipes in the
beginning of this chapter).

The getkey function sequentially sets the pin for each column LOW and then checks to
see if any of the row pins are LOW. Because pull-up resistors are used, the rows will be
high (pulled up) unless a switch is closed (closing a switch produces a LOW signal on the
input pin). If they are LOW, this indicates that the switch for that row and column is
closed. A delay is used to ensure that the switch is not bouncing (see Recipe 5.3); the
code waits for the switch to be released, and the character associated with the switch
is found in the keymap array and returned from the function. A 0 is returned if no switch
is pressed.

A library in the Arduino Playground that is similar to the preceding example provides
more functionality. The library makes it easier to handle different numbers of keys and
it can be made to work while sharing some of the pins with an LCD. You can find the
library at http://www.arduino.cc/playground/Main/KeypadTutorial.

5.5 Reading a Keypad | 151

http://www.arduino.cc/playground/Main/KeypadTutorial

See Also

For more information on the SparkFun 12-button keypad, go to http://www.sparkfun
.com/commerce/product_info.php?products_id=8653.

5.6 Reading Analog Values

Problem

You want to read the voltage on an analog pin. Perhaps you want a reading from a
potentiometer (pot) or a device or sensor that provides a voltage between 0 and 5 volts.

Solution

This sketch reads the voltage on an analog pin and flashes an LED in a proportional
rate to the value returned from the analogRead function. The voltage is adjusted by a
potentiometer connected as shown in Figure 5-7:
/*
Pot sketch
blink an LED at a rate set by the position of a potentiometer

*/

const int potPin = 0; // select the input pin for the potentiometer
const int ledPin = 13; // select the pin for the LED
int val = 0; // variable to store the value coming from the sensor

void setup()
pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT
void loop() {

val = analogRead(potPin); // read the voltage on the pot
digitalWrite(ledPin, HIGH); // turn the ledPin on

delay(val); // blink rate set by pot value (in milliseconds)
digitalWrite(ledPin, LOW); // turn the ledPin off
delay(val); // turn led off for same period as it was turned on
}
Discussion

This sketch uses the analogRead function to read the voltage on the potentiometer’s
wiper (the center pin). A pot has three pins; two are connected to a resistive material
and the third pin (usually in the middle) is connected to a wiper that can be rotated to
make contact anywhere on the resistive material. As the potentiometer rotates, the
resistance between the wiper and one of the pins increases, while the other decreases.
The schematic diagram for this recipe (Figure 5-7) may help you visualize how a po-
tentiometer works; as the wiper moves toward the bottom end, the wiper (the line with

152 | Chapter5: Simple Digital and Analog Input

http://www.sparkfun.com/commerce/product_info.php?products_id=8653
http://www.sparkfun.com/commerce/product_info.php?products_id=8653

Analog In ﬂﬁ
1
2

HEle 10K <
v
(;E;,d Pot g

o= —C O Do >
a

Figure 5-7. Connecting a potentiometer to Arduino

the arrow) will have lower resistance connecting to Gnd and higher resistance con-
necting to 5 volts. As the wiper moves down, the voltage on the analog pin will decrease
(to a minimum of 0 volts). Moving the wiper upward will have the opposite effect, and
the voltage on the pin will increase (up to a maximum of 5 volts).

N

If the voltage on the pin decreases, rather than increases, as you increase
the rotation of the potentiometer, you can reverse the connections to
~ Qs the +5 volts and Gnd pins.

The voltage is measured using analogRead, which provides a value proportional to the
actual voltage on the analog pin. The value will be 0 when there are 0 volts on the pin
and 1,023 when there are 5 volts. A value in between will be proportional to the ratio
of the voltage on the pin to 5 volts.

Potentiometers with a value of 10K ohms are the best choice for connecting to analog
pins. See this book’s website for recommended part numbers.

potPin does not need to be set as input. (This is done for you automat-
ically each time you call analogRead.)

See Also

Appendix B, for tips on reading schematic diagrams

Arduino reference for analogRead: http://www.arduino.cc/en/Reference/AnalogRead

5.6 Reading Analog Values | 153

http://oreilly.com/catalog/9780596802486/
http://www.arduino.cc/en/Reference/AnalogRead

Getting Started with Arduino by Massimo Banzi (Make)

5.7 Changing the Range of Values

Problem

You want to change the range of a value, such as the value from analogRead obtained
by connecting a potentiometer or other device that provides a variable voltage. For
example, suppose you want to display the position of a potentiometer knob as a per-
centage from 0 percent to 100 percent.

Solution

Use the Arduino map function to scale values to the range you want. This sketch reads
the voltage on a pot into the variable val and scales this from 0 to 100 as the pot is
rotated from one end to the other. It blinks an LED with a rate proportional to the
voltage on the pin and prints the scaled range to the serial port (see Recipe 4.2 for
instructions on monitoring the serial port). Recipe 5.6 (see Figure 5-7) shows how the
pot is connected:

/*

* Map sketch

* map the range of analog values from a pot to scale from 0 to 100

* resulting in an LED blink rate ranging from 0 to 100 milliseconds.
* and Pot rotation percent is written to the serial port

*/
const int potPin = 0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED

void setup()

pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT
Serial.begin(9600);

void loop() {

int val; // The value coming from the sensor
int percent; // The mapped value
val = analogRead(potPin); // read the voltage on the pot (val ranges

// from 0 to 1023)
percent = map(val,0,1023,0,100); // percent will range from 0 to 100.

digitalWwrite(ledPin, HIGH); // turn the ledPin on

delay(percent); // On time given by percent value

digitalWrite(ledPin, LOW); // turn the ledPin off

delay(100 - percent); // Off time is 100 minus On time

Serial.println(percent); // show the % of pot rotation on Serial Monitor
}

154 | Chapter5: Simple Digital and Analog Input

http://oreilly.com/catalog/9780596155520/

Discussion

Recipe 5.6 describes how the position of a pot is converted to a value. Here you use
this value with the map function to scale the value to your desired range. In this example,
the value provided by analogRead (0 to 1023) is mapped to a percentage (0 to 100). The
values from analogRead will range from 0 to 1023 if the voltage ranges from 0 to 5 volts,
but you can use any appropriate values for the source and target ranges. For example,
a typical pot only rotates 270 degrees from end to end, and if you wanted to display
the angle of the knob on your pot, you could use this code:

angle = map(val,0,1023,0,270); // angle of pot derived from analogRead val

Range values can also be negative. If you want to display 0 when the pot is centered
and negative values when the pot is rotated left and positive values when it is rotated
right, you can do this:

angle = map(val,0,1023,-135,135); // show angle of 270 degree pot with center
as 0

The map function can be handy where the input range you are concerned with does not
start at zero. For example, if you have a battery where the available capacity is propor-
tional to a voltage that ranges from 1.1 volts (1,100 millivolts) to 1.5 volts (1,500 mil-
livolts), you can do the following:

00 / 1100; // the voltage is 1.1 volts (1100mv) when empty
00 / 1500; // the voltage is 1.5 volts (1500mv) when full

const int empty

=50
const int full = 50

int val = analogRead(potPin); // read the analog voltage

int percent = map(val, empty, full, 0,100); // map the actual range of voltage
to a percent

Serial.println(percent);

(See Recipe 5.9 for more details on how analogRead values relate to actual voltage.)

See Also

The Arduino reference for map: http://www.arduino.cc/en/Reference/Map

5.8 Reading More Than Six Analog Inputs

Problem

You have more analog inputs to monitor than you have available analog pins. A stand-
ard Arduino board has six analog inputs (the Mega has 16) and there may not be enough
analog inputs available for your application. Perhaps you want to adjust eight param-
eters in your application by turning knobs on eight potentiometers.

5.8 Reading More Than Six Analog Inputs | 155

http://www.arduino.cc/en/Reference/Map

Solution

Use a multiplexer chip to select and connect multiple voltage sources to one analog
input. By sequentially selecting from multiple sources, you can read each source in turn.
This recipe uses the popular 4051 chip connected to Arduino as shown in Figure 5-8.
Your analog inputs get connected to the 4051 pins marked Ch 0 to Ch 7. Make sure
the voltage on the channel input pins is never higher than 5 volts:

/*
multiplexer sketch
read 1 of 8 analog values into single analog input pin with 4051 multiplexer

*/

// array of pins used to select 1 of 8 inputs on multiplexer

const int select[] = {2,3,4}; // array of the pins connected to the 4051 input
select lines

const int analogPin = 0; // the analog pin connected to the multiplexer
output

// this function returns the analog value for the given channel
int getValue(int channel)

// the following sets the selector pins HIGH and LOW to match the binary
value of channel
for(int bit = 0; bit < 3; bit++)
{
int pin = select[bit]; // the pin wired to the multiplexer select bit
int isBitSet = bitRead(channel, bit); // true if given bit set in channel
digitalWrite(pin, isBitSet);

return analogRead(analogPin);

}

void setup()

for(int bit = 0; bit < 3; bit++)
pinMode(select[bit], OUTPUT); // set the three select pins to output
Serial.begin(9600);

void loop () {
// print the values for each channel once per second
for(int channel = 0; channel < 8; channel++)
{
int value = getValue(channel);
Serial.print("Channel ");
Serial.print(channel);
Serial.print(" = ");
Serial.println(value);

}
delay (1000);

156 | Chapter5: Simple Digital and Analog Input

Pin1 [] Pin16 I—E]Analaglno A
1th4 Vee 8;
1Ché h2 ﬁi R
1z h1 5
1th7 tho g D
ICh5 Ch3 i U
A I 5K
E S0 3
“ s 1 SN
Gnd 2 v
" CYRESET N
(1303
o
Gnd 0
Vin

Figure 5-8. The 4051 multiplexer connected to Arduino

Discussion

Analog multiplexers are digitally controlled analog switches. The 4051 selects one of
eight inputs through three selector pins (S0, S1, and S2). There are eight different com-
binations of values for the three selector pins, and the sketch sequentially selects each
of the possible bit patterns; see Table 5-2.

Table 5-2. Truth table for 4051 multiplexer

Selector pins Selected input
S2 S1 S0

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

You may recognize the pattern in Table 5-2 as the binary representation of the decimal
values from 0 to 7.

In the preceding sketch, getValue() is the function that sets the correct selector bits for
the given channel using digitalWrite(pin, isBitSet) and reads the analog value from

5.8 Reading More Than Six Analog Inputs | 157

the selected 4051 input with analogRead(analogPin). The code to produce the bit pat-
terns uses the built-in bitRead function (see Recipe 3.12).

W
S Don’t forget to connect the ground from the devices you are measuring
"‘:\ to the ground on the 4051 and Arduino, as shown in Figure 5-8.
S & s
15)

Bear in mind that this technique selects and monitors the eight inputs sequentially, so
it requires more time between the readings on a given input compared to using analog
Read directly. If you are reading eight inputs, it will take eight times longer for each
input to be read. This may make this method unsuitable for inputs that change value
quickly.

See Also

Arduino Playground tutorial for the 4051: http://'www.arduino.cc/playground/Learning/
4051

CDA4051 data sheet: http://'www.fairchildsemi.com/ds/CD%2FCD4052BC.pdf

Analog/digital MUX breakout board data sheet: http://www.nkcelectronics.com/analog
digital-mux-breakout.html

5.9 Displaying Voltages Up to 5V

Problem

You want to monitor and display the value of a voltage between 0 and 5 volts. For
example, suppose you want to display the voltage of a single 1.5V cell on the Serial
Monitor.

Solution

Use AnalogRead to measure the voltage on an analog pin. Convert the reading to a
voltage by using the ratio of the reading to the reference voltage (5 volts), as shown in
Figure 5-9.

158 | Chapter5: Simple Digital and Analog Input

http://www.arduino.cc/playground/Learning/4051
http://www.arduino.cc/playground/Learning/4051
http://www.fairchildsemi.com/ds/CD%2FCD4052BC.pdf
http://www.nkcelectronics.com/analogdigital-mux-breakout.html
http://www.nkcelectronics.com/analogdigital-mux-breakout.html

[{ Analog In0[3

10

%8 Do not connect -
D 48 more than 5 volts =
U 5 directly toan
Arduino pin

| RE;E E (3.3 volts on 3.3 volt board)
N 5V

Gnd(3

Gnd
() Vin[3

Figure 5-9. Measuring voltages up to 5 volts using 5V board

The simplest solution uses a floating-point calculation to print the voltage; this example
sketch calculates and prints the ratio as a voltage:
/*
DisplaysvOrless sketch
prints the voltage on analog pin to the serial port
Warning - do not connect more than 5 volts directly to an Arduino pin.

*/

const int referenceVolts = 5; // the default reference on a 5-volt board
const int batteryPin = 0; // battery is connected to analog pin 0

void setup()

Serial.begin(9600);
}

void loop()
{

int val = analogRead(batteryPin); // read the value from the sensor
float volts = (val / 1023) * referenceVolts; // calculate the ratio
Serial.println(volts); // print the value in volts

}
The formula is: Volts = (analog reading / analog steps) x Reference voltage

Printing a floating-point value to the serial port with println will format the value to
two decimal places.

5.9 Displaying Voltages Upto 5V | 159

Make the following change if you are using a 3.3V board:

const int referenceVolts = 3.3;

Floating-point numbers consume lots of memory, so unless you are already using float-
ing point elsewhere in your sketch, it is more efficient to use integer values. The fol-
lowing code looks a little strange at first, but because analogRead returns a value of
1023 for 5 volts, each step in value will be 5 divided by 1,023. In units of millivolts, this
is 5,000 divided by 1,023.

This code prints the value in millivolts:

const int batteryPin = 0;
void setup()

Serial.begin(9600);
}

void loop()
{
long val = analogRead(batteryPin); // read the value from the sensor - note

val is a long int
Serial.println((val * (500000/1023)) / 100); // print the value in millivolts

The following code prints the value using decimal points. It prints 1.5 if the voltage is
1.5 volts.

const int batteryPin 0;
void setup()
{

Serial.begin(9600);

void loop()

int val = analogRead(batteryPin); // read the value from the sensor
Serial.println(val/(1023/5)); // print the integer value of the voltage
Serial.print('.");

Serial.println(val % (1023/5)); // print the fraction

If you are using a 3.3V board, change (1023/5) to (int)(1023/3.3).

160 | Chapter5: Simple Digital and Analog Input

Discussion

The analogRead() function returns a value that is proportional to the ratio of the meas-
ured voltage to the reference voltage (5 volts). To avoid the use of floating point, yet
maintain precision, the code operates on values as millivolts instead of volts (there are
1,000 millivolts in 1 volt). Because a value of 1023 indicates 5,000 millivolts, each unit
represents 5,000 divided by 1,023 millivolts (that is, 4.89 millivolts). To eliminate the
decimal point, the values are multiplied by 100. In other words, 5,000 millivolts times
100 divided by 1,023 gives the number of millivolts times 100. Dividing this by 100
yields the value in millivolts. If multiplying fractional numbers by 100 to enable the
compiler to perform the calculation using fixed-point arithmetic seems convoluted, you
can stick to the slower and more memory-hungry floating-point method.

This solution assumes you are using a standard Arduino powered from 5 volts. If you
are using a 3.3V board, the maximum voltage you can measure is 3.3 volts without
using a voltage divider—see Recipe 5.11.

5.10 Responding to Changes in Voltage

Problem

You want to monitor one or more voltages and take some action when the voltage rises
or falls below a threshold. For example, you want to flash an LED to indicate a low
battery level—perhaps to start flashing when the voltage drops below a warning
threshold and increasing in urgency as the voltage drops further.

Solution

You can use the connections shown in Figure 5-7 in Recipe 5.9, but here we’ll compare
the value from analogRead to see if it drops below a threshold. This example starts
flashing an LED at 1.2 volts and increases the on-to-off time as the voltage decreases
below the threshold. If the voltage drops below a second threshold, the LED stays lit:
/*
RespondingToChanges sketch
flash an LED to indicate low voltage levels

*/

1200; // Warning level in millivolts - LED flashes
1000; // Critical voltage level - LED stays on

long warningThreshold
long criticalThreshold

const int batteryPin =
const int ledPin = 13;

o
-

void setup()
{

pinMode(ledPin, OUTPUT);

5.10 Responding to Changes in Voltage | 161

void loop()

int val = analogRead(batteryPin); // read the value from the sensor
if(val < (warningThreshold * 1023L)/5000) {
// in the line above, L following a number makes it a 32 bit value
flash(val) ;

}

// function to flash an led with on/off time determined by value passed
as percent
void flash(int percent)

{
digitalWrite(ledPin, HICH);
delay(percent + 1);
digitalWrite(ledPin, LOW);
delay(100 - percent); // check delay == 0?

Discussion

The highlighted line in this sketch calculates the ratio of the value read from the analog
port to the value of the threshold voltage. For example, with a warning threshold of
1 volt and a reference voltage of 5 volts, you want to know when the analog reading is
one-fifth of the reference voltage. The expression 1023L tells the compiler that this is a
long integer (a 32-bit integer; see Recipe 2.2), so the compiler will promote all the
variables in this expression to long integers to prevent overflowing the capacity of an
int (a normal 16-bit integer).

When reading analog values, you can work in the units that are returned from analog
Read—ranging from 0 to 1023—or you can work in the actual voltages they represent
(see Recipe 5.7). As in this recipe, if you are not displaying voltage, it’s simpler and
more efficient to use the output of analogRead directly.

5.11 Measuring Voltages More Than 5V (Voltage Dividers)

Problem

You want to measure voltages greater than 5 volts. For example, you want to display
the voltage of a 9V battery and trigger an alarm LED when the voltage falls below a
certain level.

Solution

Use a solution similar to Recipe 5.9, but connect the voltage through a voltage divider
(see Figure 5-10). For voltages up to 10 volts, you can use two 4.7K ohm resistors. For
higher voltages, you can determine the required resistors using Table 5-3.

162 | Chapter5: Simple Digital and Analog Input

Voltage to be

/ Measured

Analog In +V

DDDDDT

A P — S

RESET R2

OZ—C QO x>

vinOJ

Figure 5-10. Voltage divider for measuring voltages greater than 5 volts

Table 5-3. Resistor values

Calculation
Maxvoltage R1 R2 R2(R1+R2) valueofresistorFactor
5 Short (+V connected to None (Gnd connectedto ~ None 1023
analog pin) Gnd)

10 1K 1K 11+1) 51

15 2K 1K 102+1) 341

20 3K 1K 13+1) 255

30 4K (3.9K) 1K 1(4+1) 170

Select the row with the highest voltage you need to measure to find the values for the
two resistors:
/*
DisplayMoreThan5V sketch
prints the voltage on analog pin to the serial port
Do not connect more than 5 volts directly to an Arduino pin.

*/

const int referenceVolts = 5; // the default reference on a 5-volt board
//const float referenceVolts = 3.3; // use this for a 3.3-volt board

const int R1 = 1000; // value for a maximum voltage of 10 volts

const int R2 = 1000;

// determine by voltage divider resistors, see text

const int resistorfFactor = 1023.0 / (R2/(R1 + R2));

const int batteryPin = 0; // +V from battery is connected to analog pin 0

5.11 Measuring Voltages More Than 5V (Voltage Dividers) | 163

void setup()

Serial.begin(9600);

void loop()
{

int val = analogRead(batteryPin); // read the value from the sensor
float volts = (val / resistorFactor) * referenceVolts ; // calculate the ratio
Serial.println(volts); // print the value in volts

}

Discussion

Like the previous analog recipes, this recipe relies on the fact that the analogRead value
is a ratio of the measured voltage to the reference. But because the measured voltage is
divided by the two dropping resistors, the analogRead value needs to be multiplied to
get the actual voltage. This code is similar to Recipe 5.7, but the value of
resistorFactor is selected based on the voltage divider resistors as shown in Table 5-3:

const int resistorFactor = 511; // determine by voltage divider resistors,
see Table 5-3

The value read from the analog pin is divided not by 1,023, but by a value determined
by the dropping resistors:

float volts = (val / resistorFactor) * referenceVolts ; // calculate the ratio

The calculation used to produce the table is based on the following formula: the output
voltage is equal to the input voltage times R2 divided by the sum of R1 and R2. In the
example where two equal-value resistors are used to drop the voltage from a 9V battery
by half, resistorFactor is 511 (half of 1,023), so the value of the volts variable will be
twice the voltage that appears on the input pin. With resistors selected for 10 volts, the
analog reading from a 9V battery will be approximately 920.

/—_ More than 5 volts on the pin can damage the pin and possibly destroy
“@@ the chip; double-check that you have chosen the right value resistors
and wired them correctly before connecting them to an Arduino input
pin. If you have a multimeter, measure the voltage before connecting

anything that could possibly carry voltages higher than 5 volts.

164 | Chapter5: Simple Digital and Analog Input

CHAPTER 6
Getting Input from Sensors

6.0 Introduction

Getting and using input from sensors enables Arduino to respond to or report on the
world around it. This is one of the most common tasks you will encounter. This chapter
provides simple and practical examples of how to use the most popular input devices
and sensors. Wiring diagrams show how to connect and power the devices, and code
examples demonstrate how to use data derived from the sensors.

Sensors respond to input from the physical world and convert this into an electrical
signal that Arduino can read on an input pin. The nature of the electrical signal provided
by a sensor depends on the kind of sensor and how much information it needs to
transmit. Some sensors (such as photoresistors and Piezo knock sensors) are construc-
ted from a substance that alters their electrical properties in response to physical
change. Others are sophisticated electronic modules that use their own microcontroller
to process information before passing a signal on for the Arduino.

Sensors use the following methods to provide information:

Digital on/off
Some devices, such as the tilt sensor in Recipe 6.1 and the motion sensor in Rec-
ipe 6.3, simply switch a voltage on and off. These can be treated like the switch
recipes shown in Chapter 5.

Analog
Other sensors provide an analog signal (a voltage that is proportional to what is
being sensed, such as temperature or light level). The recipes for detecting light
(Recipe 6.2), motion (Recipes 6.1 and 6.3), vibration (Recipe 6.6), sound (Rec-
ipe 6.7), and acceleration (Recipe 6.18) demonstrate how analog sensors can be
used. All of them use the analogRead command that is discussed in Chapter 5.

Pulse width
Distance sensors, such as the PING))) in Recipe 6.4, provide data using pulse du-
ration proportional to the distance value. These sensors measure the duration of a
pulse using the pulseIn command.

165

Serial
Some sensors provide values using a serial protocol. For example, the RFID reader
in Recipe 6.9 and the GPS in Recipe 6.14 communicate through the Arduino serial
port (see Chapter 4 for more on serial). Most Arduino boards only have one hard-
ware serial port, so read Recipe 6.14 for an example of how you can add additional
software serial ports if you have multiple serial sensors or the hardware serial port
is occupied for some other task.

Synchronous protocols: I12C and SPI
The 12C and SPI digital standards were created for microcontrollers like Arduino
to talk to external sensors and modules. Recipe 6.16 shows how a compass module
is connected using synchronous digital signaling. These protocols are used exten-
sively for sensors, actuators, and peripherals, and they are covered in detail in
Chapter 13.

There is another generic class of sensing devices that you may make use of. These are
consumer devices that contain sensors but are sold as devices in their own right, rather
than as sensors. Examples of these in this chapter include a PS2 mouse and a PlayStation
game controller. These devices can be very useful; they provide sensors already incor-
porated into robust and ergonomic devices. They are also inexpensive (often less ex-
pensive than buying the raw sensors that they contain), as they are mass-produced.
You may have some of these lying around.

If you are using a device that is not specifically covered in a recipe, you may be able to
adapt a recipe for a device that produces a similar type of output. Information about a
sensor’s output signal is usually available from the company from which you bought
the device or from a data sheet for your device (which you can find through a Google
search of the device part number or description).

Data sheets are aimed at engineers designing products to be manufactured, and they
usually provide more detail than you need to just get the product up and running. The
information on output signal will usually be in a section referring to data format, in-
terface, output signal, or something similar. Don’t forget to check the maximum voltage
(usually in a section labeled “Absolute Maximum Ratings”) to ensure that you don’t
damage the component.

Sensors designed for a maximum of 3.3 volts can be destroyed by con-
necting them to 5 volts. Check the absolute maximum rating for your
device before connecting.

Reading sensors from the messy analog world is a mixture of science, art, and perse-
verance. You may need to use ingenuity and trial and error to get a successful result. A
common problem is that the sensor just tells you a physical condition has occurred,
not what caused it. Putting the sensor in the right context (location, range, orientation)
and limiting its exposure to things that you don’t want to activate it are skills you will
acquire with experience.

166 | Chapter6: Getting Input from Sensors

Another issue concerns separating the desired signal from background noise; Rec-
ipe 6.6 shows how you can use a threshold to detect when a signal is above a certain
level, and Recipe 6.7 shows how you can take the average of a number of readings to
smooth out noise spikes.

See Also

For information on connecting electronic components, see Make: Electronics by
Charles Platt (Make).

See the introduction to Chapter 5 and Recipe 5.6 for more on reading analog values
from sensors.

6.1 Detecting Movement

Problem

You want to detect when something is moved, tilted, or shaken.

Solution

This sketch uses a switch that closes a circuit when tilted, called a tilt sensor. The switch
recipes in Chapter 5 (Recipes 5.1 and 5.2) will work with a tilt sensor substituted for
the switch.

The sketch below (circuit shown in Figure 6-1) will switch on the LED attached to pin
11 when the tilt sensor is tilted one way, and the LED connected to pin 12 when it is
tilted the other way:

/*
tilt sketch

a tilt sensor attached to pin 2,
lights one of the LEDs connected to pins 11 and 12
depending on which way the sensor is tilted

*/

const int tiltSensorPin = 2; //pin the tilt sensor is connected to
const int firstLEDPin = 11; //pin for one LED

const int secondLEDPin = 12; //pin for the other

void setup()
{

pinMode (tiltSensorPin, INPUT); //the code will read this pin
digitalWrite (tiltSensorPin, HIGH); // and use a pull-up resistor
pinMode (firstLEDPin, OUTPUT); //the code will control this pin
pinMode (secondLEDPin, OUTPUT); //and this one

}

6.1 Detecting Movement | 167

http://oreilly.com/catalog/9780596153755/

void loop()
{

if (digitalRead(tiltSensorPin)){
digitalWrite(firstLEDPin, HIGH);
digitalWrite(secondLEDPin, LOW);

//check if the pin is high
//if it is high turn on firstLED
//and turn off secondLED

}
else{

digitalWrite(firstLEDPin, LOW);
digitalWrite(secondLEDPin, HIGH);

//if it isn't
//do the opposite

}
}
Dg D[ﬂ:]n EE_EIIIIIT
£5 DIGTAL = —
Titt | Sensor £
. J a a
. e \ —
Arduino & ((\
flat
d 220 220
] Ohm Ohm a k
B G s
DA DDODT] 600000 &

Figure 6-1. Tilt sensor and LEDs

Discussion

The most common tilt sensor is a ball bearing in a box with contacts at one end. When
the box is tilted the ball rolls away from the contacts and the connection is broken.
When the box is tilted to roll the other way the ball touches the contacts and completes
a circuit. Markings, or pin configurations, show which way the sensor should be ori-
ented. Tilt sensors are sensitive to small movements of around 5 to 10 degrees when
oriented with the ball just touching the contacts. If you position the sensor so that the
ball bearing is directly above (or below) the contacts, the LED state will only change if
it is turned right over. This can be used to tell if something is upright or upside down.

To determine if something is being shaken, you need to check how long it’s been since
the state of the tilt sensor changed (this recipe’s Solution just checks if the switch was
open or closed). If it hasn’t changed for a time you consider significant, the object is
not shaking. Changing the orientation of the tilt sensor will change how vigorous the
shaking needs to be to trigger it. The following code lights an LED when the sensor is
shaken:

168 | Chapter6: Getting Input from Sensors

/*
shaken sketch
tilt sensor connected to pin 2
led connected to pin 13

*/

const int tiltSensorPin = 2;
const int ledPin = 13;

int tiltSensorPreviousValue = 0;
int tiltSensorCurrentValue = 0;
long lastTimeMoved = 0;

int shakeTime=50;

void setup()
{

pinMode (tiltSensorPin, INPUT);
digitalWrite (tiltSensorPin, HICH);
pinMode (ledPin, OUTPUT);

void loop()
{

tiltSensorCurrentValue=digitalRead(tiltSensorPin);

if (tiltSensorPreviousValue != tiltSensorCurrentValue){
lastTimeMoved = millis();
tiltSensorPreviousValue = tiltSensorCurrentValue;

}

if (millis() - lastTimeMoved < shakeTime){
digitalWrite(ledPin, HIGH);

else{
digitalwrite(ledPin, LOW);

}

Many mechanical switch sensors can be used in similar ways. A float switch can turn
on when the water level in a container rises to a certain level (similar to the way a ball
cock works in a toilet cistern). A pressure pad such as the one used in shop entrances
can be used to detect when someone stands on it. If your sensor turns a digital signal
on and off, something similar to this recipe’s sketch should be suitable.

See Also
Chapter 5 contains background information on using switches with Arduino.

Recipe 12.2 has more on using the millis function to determine delay.

6.1 Detecting Movement | 169

6.2 Detecting Light

Problem

You want to detect changes in light levels. You may want to detect a change when
something passes in front of a light detector or to measure the light level—for example,
detecting when a room is getting too dark.

Solution

The easiest way to detect light levels is to use a light dependent resistor (LDR). This
changes resistance with changing light levels, and when connected in the circuit shown
in Figure 6-2 it produces a change in voltage that the Arduino analog input pins can
sense.

000 Coooo0od

= D L o e e

DIGITAL mE

j Arduino 1

G

AREFQY
4o
13
128
g

(=X=)

ANALOG

=
> S

®ne [iDDDDD

Figure 6-2. Connecting a light dependent resistor

Discussion

The circuit for this recipe is the standard way to use any sensor that changes its resist-
ance based on some physical phenomenon (see Chapter 5 for background information
on responding to analog signals). The circuit in Figure 6-2 will change the voltage on
analog pin 0 when the resistance of the LDR changes with varying light levels.

A circuit such as this will not give the full range of possible values from the analog
input—0 to 1,023—as the voltage will not be swinging from 0 volts to 5 volts. This is
because there will always be a voltage drop across each resistance, so the voltage where
they meet will never reach the limits of the power supply. When using sensors such as
these, it is important to check the actual values the device returns in the situation you

170 | Chapter6: Getting Input from Sensors

will be using it. Then you have to determine how to convert them to the values you
need to control whatever you are going to control. See Recipe 5.7 for more details on
changing the range of values.

The LDR is a simple kind of sensor called a resistive sensor. A range of resistive sensors
respond to changes in different physical characteristics. The same circuit will work for
any kind of simple resistive sensor.

6.3 Detecting Motion (Integrating Passive Infrared Detectors)

Problem

You want to detect when people are moving near a sensor.

Solution

Use a motion sensor such as a Passive Infrared (PIR) sensor to change values on a digital
pin when someone moves nearby.

Sensors such as the SparkFun PIR Motion Sensor (SEN-08630) and the Parallax PIR
Sensor (555-28027) can be easily connected to Arduino pins, as shown in Figure 6-3.

9900900 QWMQ[LQQ PIR Sensor
’7 £5 DIGITAL =e
| Arduino &
oo £ 0ut
£16nd
‘ 4 —E15V
U\ oogo 6o0ea

Figure 6-3. Connecting a PIR motion sensor

Check the data sheet for your sensor to identify the correct pins. The Parallax sensor
has pins marked “OUT”, “-”, and “+” (for Output, Gnd, and +5V). The SparkFun
sensor is marked with “Alarm”, “GND”, and “DC” (for Output, Gnd, and +5V).

6.3 Detecting Motion (Integrating Passive Infrared Detectors) | 171

The following sketch will light the LED on Arduino pin 13 when the sensor detects
motion:

/*
PIR sketch
a Passive Infrared motion sensor connected to pin 2
lights the LED on pin 13
*/
const int ledPin = 13; // choose the pin for the LED
const int inputPin = 2; // choose the input pin (for the PIR sensor)

void setup() {
pinMode(ledPin, OUTPUT); // declare LED as output
pinMode(inputPin, INPUT); // declare pushbutton as input

void loop(){
int val = digitalRead(inputPin); // read input value

if (val == HIGH) // check if the input is HICH
digitalWrite(ledPin, HIGH); // turn LED on if motion detected
delay(500);
digitalwrite(ledPin, LOW); // turn LED off
}
Discussion

This code is similar to the pushbutton examples shown in Chapter 5. That’s because
the sensor acts like a switch when motion is detected. Different kinds of PIR sensors
are available, and you should check the information for the one you have connected.

Some sensors, such as the Parallax, have a jumper that determines how the output
behaves when motion is detected. In one mode, the output remains HIGH while motion
is detected, or it can be set so that the output goes HIGH briefly and then LOW when
triggered. The example sketch in this recipe’s Solution will work in either mode.

Other sensors may go LOW on detecting motion. If your sensor’s output pin goes LOW
when motion is detected, change the line that checks the input value so that the LED
is turned on when LOW:

if (val == LOW) // motion when the input is LOW
PIR sensors come in a variety of styles and are sensitive over different distances and

angles. Careful choice and positioning can make them respond to movement in part of
a room, rather than all of it.

PIR sensors respond to heat and can be triggered by animals such as cats
and dogs, as well as by people and other heat sources.

172 | Chapter6: Getting Input from Sensors

6.4 Measuring Distance

Problem

You want to measure the distance to something, such as a wall or someone walking
toward the Arduino.

Solution

This recipe uses the popular Parallax PING))) ultrasonic distance sensor to measure
the distance of an object ranging from 2 cm to around 3 m. It displays the distance on
the Serial Monitor and flashes an LED faster as objects get closer (Figure 6-4 shows the
connections):

/* Ping))) Sensor

* prints distance and changes LED flash rate

* depending on distance from the Ping))) sensor

*/

const int pingPin
const int ledPin

5;
13; // pin connected to LED

void setup()
{

Serial.begin(9600);
pinMode(ledPin, OUTPUT);

void loop()
{

int cm = ping(pingPin) ;
Serial.println(cm);
digitalWrite(ledPin, HICH);
delay(cm * 10); // each centimeter adds 10 milliseconds delay
digitalWrite(ledPin, LOW);
delay(cm * 10);
}

// following code based on http://www.arduino.cc/en/Tutorial/Ping
// returns the distance in cm

int ping(int pingPin)

{

// establish variables for duration of the ping,
// and the distance result in inches and centimeters:
long duration, cm;

// The PING))) is triggered by a HICH pulse of 2 or more microseconds.
// Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
pinMode(pingPin, OUTPUT);

digitalWrite(pingPin, LOW);

delayMicroseconds(2);

digitalWrite(pingPin, HIGH);

6.4 Measuring Distance | 173

delayMicroseconds(5);
digitalWrite(pingPin, LOW);

pinMode(pingPin, INPUT);
duration = pulseIn(pingPin, HIGH);

// convert the time into a distance
cm = microsecondsToCentimeters(duration);
return cm ;

}

long microsecondsToCentimeters(long microseconds)

// The speed of sound is 340 m/s or 29 microseconds per centimeter.
// The ping travels out and back, so to find the distance of the
// object we take half of the distance travelled.

return microseconds / 29 / 2;

}

>

9900900 QQ&QQQQQ
ST 77 DIGITAL =

AREFQY

Arduino)
oo jc Im—
£] Gnd
| N G—
- N Bzazze _ ANALOG
) oogogo D000

Figure 6-4. Ping))) sensor connections

Discussion

Ultrasonic sensors provide a measurement of the time it takes for sound to bounce off
an object and return to the sensor.

The “ping” sound pulse is generated when the pingPin level goes HIGH for two micro-
seconds. The sensor will then generate a pulse that terminates when the sound returns.
The width of the pulse is proportional to the distance the sound traveled and the sketch
then uses the pulseIn function to measure that duration. The speed of sound is 340
meters per second, which is 29 microseconds per centimeter. The formula for the dis-
tance of the round trip is: RoundTrip = microseconds / 29

174 | Chapter6: Getting Input from Sensors

So, the formula for the one-way distance in centimeters is: microseconds /29 / 2

The MaxBotix EZ1 is another ultrasonic sensor that can be used to measure distance.
It is easier to integrate than the Ping))) because it does not need to be “pinged.” It can
provide continuous distance information, either as an analog voltage or proportional
to pulse width. Figure 6-5 shows the connections.

S

ooooooaq DDJDD[I]D
‘ ‘ £5 DIGITAL FeE
| A I'd uino H MAXSonar- EZ1 ‘Q
@)
‘ E‘ Gnd 5V AN PW
- ooan T o
- (Y gg;-'E'E.s ANALOG
oo

LNAWIWD = O r- Mty
D[If[] 0oao0co

Figure 6-5. Connecting EZ1 PW output to a digital input pin

The sketch that follows uses the EZ1 pulse width output to produce output similar to
that of the previous sketch:

J*

* EZ1Rangefinder Distance Sensor

* prints distance and changes LED flash rate

* depending on distance from the Ping))) sensor

*/

const int sensorPin = 5;
const int ledPin = 13; // pin connected to LED

long value = 0;

int cm = 0;

int inches = 0;

void setup()

{
Serial.begin(9600);
pinMode(ledPin, OUTPUT);

void loop()

{
value = pulseIn(sensorPin, HIGH) ;

cm = value / 58; // pulse width is 58 microseconds per cm
inches = value / 147; // which is 147 microseconds per inch

6.4 Measuring Distance | 175

Serial.print(cm);
Serial.print(',");
Serial.println(inches);

digitalWrite(ledPin, HICH);

delay(cm * 10); // each centimeter adds 10 milliseconds delay
digitalWrite(ledPin, LOW);

delay(cm * 10);

delay(20);
}

The EZ1 is powered through +5V and ground pins and these are connected to the
respective Arduino pins. Connect the EZ1 PW pin (PW is the Pulse Width output) to
Arduino digital pin 5. The sketch measures the width of the pulse with the pulseIn
command. The width of the pulse is 58 microseconds per centimeter, or 147 micro-
seconds per inch.

You can also obtain a distance reading from the EZ1 through its analog output—
connect the AN pin to an analog input and read the value with analogRead. The fol-
lowing code prints the analog input converted to inches:

value = analogRead(0);

inches = value / 2; // each digit of analog read is around 5mv
Serial.println(inches);

The analog output is around 9.8 mV per inch. The value from analogRead is around
4.8 mV per unit (see Recipe 5.6 for more on analogRead) and the preceding code rounds
these so that each group of two units is one inch. The rounding error is small compared
to the accuracy of the device, but if you want a more precise calculation you can use
floating point as follows:

value = analogRead(0);

float mv = (value /1024.0) * 5000 ;

float Inches = mv / 9.8; // 9.8mv per inch
Serial.println(Inches) ;

See Also
Recipe 5.6 explains how to convert readings from analogInput into voltage values.

The Arduino reference for pulselIn: http://www.arduino.cc/en/Reference/Pulseln

6.5 Measuring Distance Accurately

Problem

You want to measure how far objects are from the Arduino with more accuracy than
in Recipe 6.4.

176 | Chapter6: Getting Input from Sensors

http://www.arduino.cc/en/Reference/PulseIn

Solution

Infrared (IR) sensors generally provide an analog output that can be measured using
analogRead. They can have greater accuracy than ultrasonic sensors, albeit with a small-
er range (a range of 10 cm to 1 m or 2 m is typical for IR sensors). This sketch provides
similar functionality to Recipe 6.4, but it uses an infrared sensor—the Sharp
GP2Y0AO2YKOF (Figure 6-6 shows the connections):
/* ir-distance sketch
* prints distance and changes LED flash rate based on distance from IR sensor

*/

const int ledPin 13; // the pin connected to the LED to flash
const int sensorPin = 0; // the analog pin connected to the sensor

const long referenceMv = 5000; // long int to prevent overflow when multiplied
void setup()

Serial.begin(9600);
pinMode(ledPin, OUTPUT);

void loop()
{

int val = analogRead(sensorPin);
int mv = (val * referenceMv) / 1023;

Serial.print(mVv);
Serial.print(",");
int cm = getDistance(mV);

Serial.println(cm);

digitalWrite(ledPin, HICH);

delay(cm * 10); // each centimeter adds 10 milliseconds delay
digitalWrite(ledPin, LOW);

delay(cm * 10);

delay(100);
}

// the following is used to interpolate the distance from a table

// table entries are distances in steps of 250 millivolts

const int NBR_ELEMS = 10;

const int firstElement = 250; // first entry is 250 mV

const int interval = 250; // millivolts between each element

static int distance[TABLE_ENTRIES] = {150,140,130,100,60,50,40,35,30,25,20,15};

int getDistance(int mv)

if(mv > INTERVAL * TABLE_ENTRIES)
return distance[TABLE_ENTRIES-1];
else

{

6.5 Measuring Distance Accurately | 177

int index = mV / INTERVAL;
float frac = (mV % 250) / (float)INTERVAL;
return distance[index] - ((distance[index] - distance[index+1]) * frac);
}
}

CX0000 00000000

[T =R e W =]

" DIGITAL == O

—F1 Output
aa _E] Gnd
—E] 5V

| 4 ()

= _ ANALOG
- |/) (\] é%aé&f— o — i
S\ 0 ROOOOQ

Figure 6-6. Connecting the Sharp IR distance sensor

Discussion

The output from the IR sensor is not linear—in other words, the value read from
analogRead is not proportional to distance. So, the calculation is more complicated than
the one used in Recipe 6.4. The sketch in this recipe’s Solution uses a table to interpolate
the actual distance by finding the nearest entry in the table and adjusting it based on
the ratio of the measured value to the next table entry (this technique is called inter-
polating). You may need to adjust the table values for your sensor—you can do this
with information from your data sheet or through trial and error.

W N
)

As values for the table can be found by trial and error (measuring the

voltage until it changes by the required amount, and then measuring the

W distance), this technique can also be used when you don’t have an equa-

" tion to interpret the values—for example, when you don’t have a part
data sheet for the device you are using.

The conversion from voltage to distance is done in this function:

int getDistance(int mv)

178 | Chapter6: Getting Input from Sensors

The function first checks if the value is within the range given in the table. The shortest
valid distance is returned if the value is not within range:

if(mv > INTERVAL * TABLE_ENTRIES)
return distance[TABLE_ENTRIES-1]; //TABLE_ENTRIES-1 is last valid entry

If the value is within the table range, integer division calculates which entry is closest
but is lower than the reading:

int index = mV / INTERVAL ;

The modulo operator (see Chapter 3) is used to calculate a fractional value when a
reading falls between two entries:

float frac = (mV % 250) / (float)INTERVAL;
return distance[index] + (distance[index]* (frac / interval));

The last line in the getDistance function uses the index and fraction to calculate and
return a distance value. It reads the value from the table, and then adds a proportion
of that value based on the frac value. This final element is an approximation, but as it
is for a small range of the result, it gives acceptable results. If it is not accurate enough
for you, you need to produce a table with more values closer together.

A table can also be used to improve performance if the calculation takes significant
time to complete, or is done repeatedly with a limited number of values. Calculations,
particularly with floating point, can be slow. Replacing the calculation with a table can
speed things up.

The values can either be hardcoded into the sketch, like this one, or be calculated in
setup(). This may make the sketch take longer to start, but as this only happens once
each time the Arduino gets power, you will then get a speed gain every time around the
main loop(). The trade-off for the speed is that the table consumes memory—the bigger
the table, the more RAM memory used. See Chapter 17 for help using Progmem to store
data in program memory.

You may need to add a capacitor across the +5V and Gnd lines to sta-
bilize the power supply to the sensor so that the connecting leads are
W not kept short. If you get erratic readings, connect a 10 uF capacitor at
the sensor (see Appendix C for more on using decoupling capacitors).

See Also

A detailed explanation of the Sharp IR sensor is available at http://www.societyofrobots
.com/sensors_sharpirrange.shtml.

6.5 Measuring Distance Accurately | 179

http://www.societyofrobots.com/sensors_sharpirrange.shtml
http://www.societyofrobots.com/sensors_sharpirrange.shtml

6.6 Detecting Vibration

Problem

You want to respond to vibration; for example, when a door is knocked.

Solution

A Piezo sensor responds to vibration. It works best when connected to a larger surface
that vibrates. Figure 6-7 shows the connections:
/* piezo sketch

* lights and LED when the Piezo is tapped
*/

const int sensorPin = 0; // the analog pin connected to the sensor
const int ledPin = 13; // pin connected to LED
const int THRESHOLD = 100;

void setup()
{

pinMode(ledPin, OUTPUT);

void loop()

int val = analogRead(sensorPin);
if (val >= THRESHOLD)

digitalWrite(ledPin, HICH);
delay(100); // to make the LED visible

else
digitalWrite(ledPin, LOW);
}

Discussion

A Piezo sensor, also known as a knock sensor, produces a voltage in response to physical
stress. The more it is stressed, the higher the voltage. The Piezo is polarized and the
positive side (usually a red wire or a wire marked with a “+”) is connected to the analog
input; the negative wire (usually black or marked with a “-”) is connected to ground.
A high-value resistor (1 megohm) is connected across the sensor.

180 | Chapter6: Getting Input from Sensors

oe Knock Sensor

- Arduino Piezo
]

Y
AN AN

Figure 6-7. Knock sensor connections

The voltage is detected by Arduino analogRead to turn on an LED (see Chapter 5 for
more about the analogRead function). The THRESHOLD value determines the level from
the sensor that will turn on the LED, and you can decrease or increase this value to
make the sketch more or less sensitive.

Piezo sensors can be bought in plastic cases or as bare metal disks with two wires
attached. The components are the same; use whichever fits your project best.

Some sensors, such as the Piezo, can be driven by the Arduino to produce the thing
that they can sense. Chapter 9 has more about using a Piezo to generate sound.

6.7 Detecting Sound

Problem

You want to detect sounds such as clapping, talking, or shouting.

Solution

This recipe uses the BOB-08669 breakout board for the Electret Microphone (Spark-
Fun). Connect the board as shown in Figure 6-8 and load the code to the board.

6.7 Detecting Sound | 181

Figure 6-8. Microphone board connections

The built-in LED on Arduino pin 13 will turn on when you clap, shout, or play loud
music near the microphone. You may need to adjust the threshold—use the Serial
and change the threshold value so that it is
between the high values you get when noise is present and the low values when there

Monitor to view the high and low values,

is little or no noise. Upload the changed code to the board and try again:

/*

microphone sketch

SparkFun breakout board for Electret Microphone is connected to analog pin 0

*/

const int ledPin = 13; //the code will flash the LED in pin 13

const int middleValue = 512; //the middle of the range of analog values
const int numberOfSamples = 128; //how many readings will be taken each time
int sample; //the value read from microphone each time
long signal; //the reading once you have removed DC offset
long averageReading; //the average of that loop of readings

long runningAverage=0; //the running average of calculated values
const int averagedOver= 16; //how quickly new values affect running average

//bigger numbers mean slower

const int threshold=400; //at what level the light turns on

void setup() {
pinMode(ledPin, OUTPUT);
Serial.begin(9600);

void loop() {
long sumOfSquares = 0;
for (int i=0; i<numberOfSamples; i++)

{ //take many readings and average them

182 | Chapter6: Getting Input from Sensors

sample = analogRead(0); //take a reading
signal = (sample - middleValue); //work out its offset from the center
signal *= signal; //square it to make all values positive
sumOfSquares += signal; //add to the total

}

averageReading = sumOfSquares/numberOfSamples; //calculate running average

runningAverage=(((averagedOver-1)*runningAverage)+averageReading)/averagedOver;

if (runningAverage>threshold){ //is average more than the threshold ?
digitalWrite(ledPin, HIGH); //if it is turn on the LED
telse{
digitalWrite(ledPin, LOW); //if it isn't turn the LED off
Serial.println(runningAverage); //print the value so you can check it
}
Discussion

A microphone produces very small electrical signals. If you connected it straight to the
pin of an Arduino, you would not get any detectable change. The signal needs to be
amplified first to make it usable by Arduino. The SparkFun board has the microphone
with an amplifier circuit built in to amplify the signal to a level readable by Arduino.

Because you are reading an audio signal in this recipe, you will need to do some addi-
tional calculations to get useful information. An audio signal is changing fairly quickly,
and the value returned by analogRead will depend on what point in the undulating signal
you take a reading. If you are unfamiliar with using analogRead, see Chapter 5 and
Recipe 6.2. An example waveform for an audio tone is shown in Figure 6-9. As time
changes from left to right, the voltage goes up and down in a regular pattern. If you
take readings at the three different times marked on it, you will get three different values.
If you used this to make decisions, you might incorrectly conclude that the signal got
louder in the middle.

An accurate measurement requires multiple readings taken close together. The peaks
and troughs increase as the signal gets bigger. The difference between the bottom of a
trough and the top of a peak is called the amplitude of the signal, and this increases as
the signal gets louder.

6.7 Detecting Sound | 183

Figure 6-9. Audio signal measured in three places

To measure the size of the peaks and troughs, you measure the difference between the
midpoint voltage and the levels of the peaks and troughs. You can visualize this mid-
point value as a line running midway between the highest peak and the lowest trough,
as shown in Figure 6-10. The line represents the DC offset of the signal (it’s the DC
value when there are no peaks or troughs). If you subtract the DC offset value from
your analogRead values, you get the correct reading for the signal amplitude.

LM35

Arduino -

| 4
o aln

A WFM/

Figure 6-10. Audio signal showing DC offset (signal midpoint)

+5 Out_Gnd

As the signal gets louder, the average size of these values will increase, but as some of
them are negative (where the signal has dropped below the DC offset), they will cancel
each other out, and the average will tend to be zero. To fix that, we square each value
(multiply it by itself). This will make all the values positive, and it will increase the
difference between small changes, which helps you evaluate changes as well. The aver-
age value will now go up and down as the signal amplitude does.

184 | Chapter6: Getting Input from Sensors

To do the calculation, we need to know what value to use for the DC offset. To get a
clean signal, the amplifier circuit for the microphone will have been designed to have
a DC offset as close as possible to the middle of the possible range of voltage so that
the signal can get as big as possible without distorting. The code assumes this and uses
the value 512 (right in the middle of the analog input range of 0 to 1,023).

The values of variables at the top of the sketch can be varied if the sketch does not
trigger well for the level of sound you want.

The numberOfSamples is set at 128—if it is set too small, the average may not adequately
cover complete cycles of the waveform and you will get erratic readings. If the value is
set too high, you will be averaging over too long a time, and a very short sound might
be missed as it does not produce enough change once a large number of readings are
averaged. It could also start to introduce a noticeable delay between a sound and the
light going on. Constants used in calculations, such as number0OfSamples and averaged
Over, are set to powers of 2 (128 and 16, respectively). Try to use values evenly divisible
by two for these to give you the fastest performance (see Chapter 3 for more on math
functions).

6.8 Measuring Temperature

Problem

You want to display the temperature or use the value to control a device; for example,
to switch something on when the temperature reaches a threshold.

Solution

This recipe displays the temperature in Fahrenheit and Celsius (Centigrade) using the
popular LM35 heat detection sensor. The sensor looks similar to a transistor and is
connected as shown in Figure 6-11:

/*
1m35 sketch
prints the temperature to the Serial Monitor

*/

const int inPin = 0; // analog pin

void setup()
{
Serial.begin(9600);
}
void loop()
{

int value = analogRead(inPin);

6.8 Measuring Temperature | 185

Serial.print(value); Serial.print(" > ");

float millivolts = (value / 1024.0) * 5000;

float celsius = millivolts / 10; // sensor output is 10mV per degree Celsius
Serial.print(celsius);

Serial.print(" degrees Celsius, ");

Serial.print((celsius * 9)/ 5 + 32); // converts to fahrenheit
Serial.println(" degrees Fahrenheit");

delay(1000); // wait for one second

ssecseeshissoseus

=3 DIGITAL == N
Enable
ouT RRFIdD
. eader
Arduino] +5
22! — Gnd

e s

~ m[iﬂ [e0/0 000

Figure 6-11. Connecting the LM35 temperature sensor

Discussion

The LM35 temperature sensor produces an analog voltage directly proportional to
temperature with an output of 1 millivolt per 0.1°C (10 mV per degree).

The sketch converts the analogRead values into millivolts (see Chapter 5) and divides
this by 10 to get degrees.

The sensor accuracy is around 0.5°C, and in many cases you can use integer math
instead of floating point.

The following sketch turns on pin 2 when the temperature is above a threshold:

const int inPin = 0; // sensor connected to this analog pin
const int outPin = 13; //2; // digital output pin

const int threshold = 25; // the degrees celsius that will trigger the output pin

186 | Chapter6: Getting Input from Sensors

void setup()
{

Serial.begin(9600);
pinMode(outPin, OUTPUT);

void loop()
{

int value = analogRead(inPin);
long celsius = (value * 500L) /1024; // 10 mV per degree c, see text
Serial.print(celsius);
Serial.print(" degrees Celsius: ");
if(celsius > threshold)
{
digitalWrite(outPin, HICH);
Serial.println("pin is on");
}

else

{
digitalWrite(outPin, LOW);
Serial.println("pin is off");

delay(1000); // wait for one second

The sketch uses long (32-bit) integers to calculate the value. The letter L after the num-
ber causes the calculation to be performed using long integer math, so the multiplica-
tion of the maximum temperature (500 on a 5V Arduino) and the value read from the
analog input does not overflow. See the recipes in Chapter 5 for more about converting
analog levels into voltage values.

If you need the values in Fahrenheit, you could use the LM34 sensor, as this produces
an output in Fahrenheit, or you can convert the values in this recipe using the following
formula:

float f = (celsius * 9)/ 5 + 32);

6.9 Reading RFID Tags

Problem

You want to read an RFID tag and respond to specific IDs.

Solution

Figure 6-12 shows a Parallax RFID (radio frequency identification) reader connected
to the Arduino serial port. (You may need to disconnect the reader from the serial port
when uploading the sketch.)

6.9 Reading RFIDTags | 187

RESET
kS

Gnd[F——
end[]

vin[J

ONINAYY

Figure 6-12. Serial RFID reader connected to Arduino

The sketch reads and displays the value of an RFID tag:
/*
RFID sketch

Displays the value read from an RFID tag
*/

const int startByte = 10; // ASCII line feed precedes each tag
const int endByte = 13; // ASCII carriage return terminates each tag

const int taglength = 10; // the number of digits in tag

const int totallength = taglength + 2; //tag length + start and end bytes

char tag[taglength + 1]; // holds the tag and a terminating null

int bytesread = 0;

void setup()

Serial.begin(2400); // set this to the baud rate of your RFID reader

pinMode(2,0UTPUT); // connected to the RFID ENABLE pin
digitalWrite(2, LOW); // enable the RFID reader

void loop()
{

if(Serial.available() >= totallength) // check if there's enough data

if(Serial.read() == startByte)

bytesread = 0; // start of tag so reset count to 0

188 | Chapter6: Getting Input from Sensors

while(bytesread < taglength) // read 10 digit code

int val = Serial.read();

if((val == startByte)||(val == endByte)) // check for end of code
break;

tag[bytesread] = val;
bytesread = bytesread + 1; // ready to read next digit

if(Serial.read() == endByte) // check for the correct end character

tag[bytesread] = 0; // terminate the string
Serial.print("RFID tag is: ");
Serial.println(tag);
}
}
}
}

Discussion

A tag consists of a start character followed by a 10-digit tag and is terminated by an
end character. The sketch waits for a complete tag message to be available and displays
the tag if it is valid. The tag is received as ASCII digits (see Recipe 4.4 for more on
receiving ASCII digits). You may want to convert this into a number if you want to
store or compare the values received. To do this, change the last few lines as follows:

if(Serial.read() == endByte) // check for the correct end character

tag[bytesread] = 0; // terminate the string

long tagValue = atol(tag); // convert the ASCII tag to a long integer
Serial.print("RFID tag is: ");

Serial.println(tagValue);

RFID stands for radio frequency identification, and as the name implies, it is sensitive
to radio frequencies and can be prone to interference. The code in this recipe’s Solution
will only use code of the correct length that contains the correct start and end bits,
which should eliminate most errors. But you can make the code more resilient by read-
ing the tag more than once and only using the data if it’s the same each time. (RFID
readers such as the Parallax will repeat the code while a valid card is near the reader.)
To do this, add the following lines to the last few lines in the preceding code snippet:

if(Serial.read() == endByte) // check for the correct end character

tag[bytesread] = 0; // terminate the string
long tagValue = atol(tag); // convert the ASCII tag to a long integer
if (tagValue == lastTagValue)

Serial.print("RFID tag is: ");
Serial.println(tagValue);
lasTagValue = tagValue;
}
}

6.9 Reading RFIDTags | 189

You will need to add the declaration for lastTagValue at the top of the sketch:
Long lastTagValue=0;

This approach is similar to the code from Recipe 5.3. It means you will only get con-
firmation of a card if it is presented long enough for two readings to be taken, but false
readings will be less likely. You can avoid accidental triggering by making it necessary
for the card to be present for a certain amount of time before the number is reported.

6.10 Tracking the Movement of a Dial

Problem

You want to measure and display the rotation of something to track its speed and/or
direction.

Solution

To sense this kind of movement you could use a rotary encoder. Connect the encoder
as shown in Figure 6-13:

/*

Read a rotary encoder

This simple version polls the encoder pins

The position is displayed on the Serial Monitor

*/

const int encoderPinA = 4;

const int encoderPinB = 2;

const int encoderStepsPerRevolution=16;
int angle = 0;

int val;

int encoderPos = 0;

boolean encoderAlLast = LOW; // remembers the previous pin state

void setup()

{
pinMode(encoderPinA, INPUT);
pinMode(encoderPinB, INPUT);
digitalWrite(encoderPinA, HIGH);
digitalWrite(encoderPinB, HIGH);
Serial.begin (9600);

void loop()

{

boolean encoderA = digitalRead(encoderPinA);

190 | Chapter6: Getting Input from Sensors

if ((encoderALast == HIGH) 8& (encoderA == LOW))
if (digitalRead(encoderPinB) == LOW)

encoderPos--;

else

{

encoderPos++;

angle=(encoderPos % encoderStepsPerRevolution)*360/encoderStepsPerRevolution;
Serial.print (encoderPos);

Serial.print (" ");

Serial.println (angle);

}
encoderAlast = encoderA;
}
00990000508 900909)
_ 25 T DIGITAL ==
33V E——————
i - Gnd F——
Arduino e LUSY300AL
ol Gyro S
)
‘ 4 lle
B B
A sfinnesee

Figure 6-13. Rotary encoder

Discussion

A rotary encoder produces two signals as it is turned. Both signals alternate between
HICH and LOW as the shaft is turned, but the signals are slightly out of phase with each
other. If you detect the point where one of the signals changes from HIGH to LOW, the
state of the other pin (whether it is HIGH or LOW) will tell you which way the shaft is
rotating.

6.10 Tracking the Movement of a Dial | 191

So, the first line of code in the loop function reads one of the encoder pins:

int encoderA = digitalRead(encoderPinA);

Then it checks this value and the previous one to see if the value has just changed to LOW:
if ((encoderALast == HIGH) && (encoderA == LOW))

If it has not, the code doesn’t execute the following block; it goes to the bottom of
loop, saves the value it has just read in encoderALast, and goes back around to take a
fresh reading.

When the following expression is true:
if ((encoderAlLast == HIGH) &3 (encoderA == LOW))

the code reads the other encoder pin and increments or decrements encoderPos de-
pending on the value returned. It calculates the angle of the shaft (taking O to be the
point the shaft was at when the code started running). It then sends the values down
the serial port so that you can see it in the Serial Monitor.

Encoders come in different resolutions, quoted as steps per revolution. This indicates
how many times the signals alternate between HIGH and LOW for one revolution of the
shaft. Values can vary from 16 to 1,000. The higher values can detect smaller move-
ments, and these encoders cost much more money. The value for the encoder is hard-
coded in the code in the following line:

const int encoderStepsPerRevolution=16;
If your encoder is different, you need to change that to get the correct angle values.

If you get values out that don’t go up and down, but increase regardless of the direction
you turn the encoder, try changing the test to look for a rising edge rather than a falling
one. Swap the LOW and HIGH values in the line that checks the values so that it looks like
this:

if ((encoderAlLast == LOW) && (encoderA == HIGH))

Rotary encoders just produce an increment/decrement signal; they cannot directly tell
you the shaft angle. The code calculates this, but it will be relative to the start position
each time the code runs. The code monitors the pins by polling (continuously checking
the value of) them. There is no guarantee that the pins have not changed a few times
since the last time the code looked, so if the code does lots of other things as well, and
the encoder is turned very quickly, it is possible that some of the steps will be missed.
For high-resolution encoders this is more likely, as they will send signals much more
often as they are turned.

Towork out the speed, you need to count how many steps are registered in one direction
in a set time.

192 | Chapter6: Getting Input from Sensors

6.11 Tracking the Movement of More Than One Rotary Encoder

Problem

You have two or more rotary encoders and you want to measure and display rotation.

Solution

The circuit uses two encoders, connected as shown in Figure 6-14. You can read more
about rotary encoders in Recipe 6.10:

/*
RotaryEncoderMultiPoll

This sketch has two encoders connected.

One is connected to pins 2 and 3

The other is connected to pins 4 and 5

*/
const int ENCODERS = 2; // the number of encoders

const int encoderPinA[ENCODERS] = {2,4}; // encoderA pins on 2 and 4

const int encoderPinB[ENCODERS] = {3,5}; // encoderB pins on 3 and 5

int encoderPos[ENCODERS] = { 0,0}; // initialize the positions to 0
boolean encoderALast[ENCODERS] = { LOW,LOW}; // holds last state of encoderA pin

void setup()
{

for (int i=2; i<6; i++){
pinMode(i, HIGH);
digitalWrite(i, HICH);

}

Serial.begin (9600);

int updatePosition(int encoderIndex)
{
boolean encoderA = digitalRead(encoderPinA[encoderIndex]);
if ((encoderALast[encoderIndex] == HIGH) & (encoderA == LOW))

if (digitalRead(encoderPinB[encoderIndex]) == LOW)

encoderPos[encoderIndex]--;
}
else
{

encoderPos[encoderIndex]++;
}
Serial.print("Encoder ");
Serial.print(encoderIndex,DEC);
Serial.print("=");
Serial.print (encoderPos[encoderIndex]);
Serial.println ("/");

6.11 Tracking the Movement of More Than One Rotary Encoder | 193

encoderAlast[encoderIndex] = encoderA;

}

void loop()

for(int i=0; i < ENCODERS;i++)
{
updatePosition(i);
}
}

£oo00000 - 0ooa0aan
€577 e | EE
6 4
A £l
. WO Ok
Arduino
s '
Data Gnd

- |/)| J é%ﬁ&g'ﬁ ciﬂil-g;vm
_ @0 0 00000a

Figure 6-14. Connecting two rotary encoders

Discussion

This recipe uses the same code logic as Recipe 6.10, which was reading one encoder,
but it uses arrays for all the variables that must be remembered separately for each
encoder. You can then use a for loop to go through each one and read it and calculate
its rotation. To use more encoders, set the ENCODERS values to the number of encoders
you have and extend the arrays and the definitions to say which pins they are attached
to.

If you get values out that don’t go up and down, but increase regardless of the direction
you turn the encoder, try changing the test to look for a rising edge rather than a falling
one. Swap the LOW and HIGH values in the line that checks the values from this:

if ((encoderALast[encoderIndex] == HIGH) && (encoderA == LOW))

194 | Chapter6: Getting Input from Sensors

to this:
if ((encoderALast[encoderIndex] == LOW) 88 (encoderA == HIGH))

If one of the encoders works but the other just counts up, switch over the A and B
connections for the one that just counts up.

6.12 Tracking the Movement of a Dial in a Busy Sketch

Problem

Asyou extend your code and it is doing other things in addition to reading the encoder,
reading the encoder starts to get unreliable. This problem is particularly bad if the shaft
rotates quickly.

Solution

The circuit is the same as the one for Recipe 6.11. We will use an interrupt on the
Arduino to make sure that every time a step happens, the code responds to it:
/*
RotaryEncoderInterrupt sketch
*/

const int encoderPinA = 2;

const int encoderPinB = 4;

int Pos, oldPos;

volatile int encoderPos = 0; // variables changed within interrupts are volatile

void setup()
{

pinMode(encoderPinA, INPUT);
pinMode(encoderPinB, INPUT);
digitalWrite(encoderPinA, HIGH);
digitalWrite(encoderPinB, HIGH);
Serial.begin(9600);

attachInterrupt(0o, doEncoder, FALLING); // encoder pin on interrupt o (pin 2)
}

void loop()
{
uint8 t oldSREG = SREG;
cli();
Pos = encoderPos;
SREG = 0ldSREG;
if(Pos != oldPos)

Serial.println(Pos,DEC);
o0ldPos = Pos;

6.12 Tracking the Movement of a Dial in a Busy Sketch | 195

Delay(1000);

void doEncoder()

if (digitalRead(encoderPinA) == digitalRead(encoderPinB))

encoderPos++; // count up if both encoder pins are the same
else
encoderPos--; //count down if pins are different

}

This code will only report the Pos value on the serial port, at most, once every second
(because of the delay), but the values reported will take into account any movement
that may have happened while it was delaying.

Discussion

As your code has more things to do, the encoder pins will be checked less often. If the
pins go through a whole step change before getting read, the Arduino will not detect
that step. Moving the shaft quickly will cause this to happen more often, as the steps
will be happening more quickly.

To make sure the code responds every time a step happens, you need to use interrupts.
When the interrupt condition happens, the code jumps from wherever it is, does what
needs to happen, and then returns to where it was and carries on.

On a standard Arduino board, two pins can be used as interrupts: pins 2 and 3. The
interrupt is enabled through the following line:

attachInterrupt(0, doEncoder, FALLING);

The three parameters needed are the interrupt pin identifier (0 for pin 2, 1 for pin 3);
the function to jump to when the interrupt happens, in this case doEncoder; and finally,
the pin behavior to trigger the interrupt, in this case when the voltage falls from 5 to
0volts. The other options are RISING (voltage rises from 0 to 5 volts) and CHANGE (voltage
falls or rises).

The doEncoder function checks the encoder pins to see which way the shaft turned, and
changes encoderPos to reflect this.

If the values reported only increase regardless of the direction of rotation, try changing
the interrupt to look for RISING rather than FALLING.

Because encoderPos is changed in the function that is called when the interrupt happens,
it needs to be declared as volatile when it is created. This tells the compiler that it
could change at any time; don’t optimize the code by assuming it won’t have changed,
as the interrupt can happen at any time.

196 | Chapter6: Getting Input from Sensors

The Arduino build process optimizes the code by removing code and
variables that are not used by your sketch code. Variables that are only
%s" modified in an interrupt handler should be declared as volatile to tell
the compiler not to remove these variables.

To read this variable in the main loop, you should take special precautions to make
sure the interrupt does not happen in the middle of reading it. This chunk of code does
that:

uint8_t oldSREG = SREG;

cli();
Pos = encoderPos;
SREG = 0ldSREG;

First you save the state of SREG (the interrupt registers), and then cli turns the interrupt
off. The value is read, and then restoring SREG turns the interrupt back on and sets
everything back as it was. Any interrupt that occurs when interrupts are turned off will
wait until interrupts are turned back on. This period is so short that interrupts will not
be missed (as long as you keep the code in the interrupt handler as short as possible).

6.13 Using a Mouse

Problem

You want to detect movements of a PS2-compatible mouse and respond to changes in
the x and y coordinates.

Solution

This solution uses LEDs to indicate mouse movement. The brightness of the LEDs
changes in response to mouse movement in the x (left and right) and y (nearer and
farther) directions. Clicking the mouse buttons sets the current position as the reference
point. Figure 6-15 shows the connections:
/*
Mouse
an arduino sketch using ps2 mouse library

see: http://www.arduino.cc/playground/ComponentLib/Ps2mouse
*/

// mouse library from : http://www.arduino.cc/playground/ComponentLib/Ps2mouse
#include <ps2.h>

const int dataPin = 5
const int clockPin = 6;

const int xLedPin
const int ylLedPin

n o
O
[
-

6.13 Usinga Mouse | 197

const int mouseRange = 255; // the maximum range of x/y values

int xPosition = 0;
int yPosition = 0;
int xBrightness = 128; // values increased and decreased based on mouse position
int yBrightness = 128;

// values incremented and decremented when mouse moves

const byte REQUEST DATA = oxeb; // command to get data from the mouse
PS2 mouse(clockPin, dataPin);

void setup()

{

Serial.begin(115200); // note the higher than usual serial speed
mouseBegin();

// get a reading from mouse and report it back to the host via the serial line
void loop()
{

char x; // values read from the mouse
char y;
byte status;

// get a reading from the mouse

mouse.write(REQUEST DATA); // ask the mouse for data

mouse.read(); // ignore ack

status = mouse.read(); // read the mouse buttons

if(status & 1) // this bit is set if the left mouse btn pressed
xPosition = 0; // center the mouse x position

if(status & 2) // this bit is set if the right mouse btn pressed
yPosition = 0; // center the mouse y position

x = mouse.read();

y = mouse.read();
if(x!=0|]y!=0)
{

// here if there is mouse movement

xPosition = xPosition + x; // accumulate the position
xPosition = constrain(xPosition,-mouseRange,mouseRange);

xBrightness = map(xPosition, -mouseRange, mouseRange, 0,255);
analogirite(xLedPin, xBrightness);

yPosition = constrain(yPosition + y, -mouseRange,mouseRange);
yBrightness = map(yPosition, -mouseRange, mouseRange, 0,255);
analogWirite(yLedPin, yBrightness);
}
}

void mouseBegin()

// reset and initialize the mouse

198 | Chapter6: Getting Input from Sensors

mouse.write(oxff); // reset
delayMicroseconds(100);

mouse.read(); // ack byte
mouse.read(); // blank
mouse.read(); // blank
mouse.write(0xf0); // remote mode
mouse.read(); // ack
delayMicroseconds(100);
}
Controller Pins
(looking at plug)
© Data
A gc © Command
: ,\
R 3 0
3E
2 Gnd C,
D 1
RX0
U O +5Volts G
| © Att
RESETCY
w3 o
N o © Clock
Gnd[)
0 Gnd o
vin[J
o Ack
N~

Figure 6-15. Connecting a mouse to indicate position and light LEDs

Discussion

Connect the mouse signal (clock and data) and power leads to Arduino, as shown in
Figure 6-15. This solution only works with PS2-compatible devices, so you may need
to find an older mouse—most mice with the round PS2 connector should work.

The mouseBegin function initializes the mouse to respond to requests for movement and
button status. The PS2 library from http://www.arduino.cc/playground/ComponentLib/
Ps2mouse handles the low-level communication. The mouse.write command is used to
instruct the mouse that data will be requested. The first call to mouse.read gets an
acknowledgment (which is ignored in this example). The next call to mouse.read gets

6.13 Usinga Mouse | 199

http://www.arduino.cc/playground/ComponentLib/Ps2mouse
http://www.arduino.cc/playground/ComponentLib/Ps2mouse

the button status, and the last two mouse.read calls get the x and y movement that has
taken place since the previous request.

The sketch tests to see which bits are HIGH in the status value to determine if the left
or right mouse button was pressed. The two rightmost bits will be HIGH when the left
and right buttons are pressed, and these are checked in the following lines:
status = mouse.read(); // read the mouse buttons
if(status & 1) // rightmost bit is set if the left mouse btn pressed
xPosition = 0; // center the mouse x position

if(status & 2) // this bit is set if the right mouse btn pressed
yPosition = 0; // center the mouse y position

The x and y values read from the mouse represent the movement since the previous
request, and these values are accumulated in the variables xPosition and yPosition.

The values of x and y will be positive if the mouse moves right or away from you, and
negative if it moves left or toward you.

The sketch ensures that the accumulated value does not exceed the defined range
(mouseRange) using the constrain function:

xPosition = xPosition + x; // accumulate the position
xPosition = constrain(xPosition,-mouseRange,mouseRange);

The yPosition calculation shows a shorthand way to do the same thing; here the cal-
culation for the y value is done within the call to constrain:

yPosition = constrain(yPosition + y,-mouseRange,mouseRange);

The xPosition and yPosition variables are reset to zero if the left and right mouse
buttons are pressed.

LEDs are illuminated to correspond to position using analoghrite—half brightness in
the center, and increasing and decreasing in brightness as the mouse position increases
and decreases.

The position can be displayed on the Serial Monitor by adding the following line just
after the analogWrite function:

printValues(); // show button and x and y values on Serial Monitor

Add the following function to the end of the sketch to print the values received from
the mouse:

void printValues()

{

Serial.println(status, BIN);

Serial.print("X=");
Serial.print(x,DEC);
Serial.print(", position= ");
Serial.print(xPosition);
Serial.print(", brightness= ");
Serial.println(xBrightness);

200 | Chapter6: Getting Input from Sensors

Serial.print("Y=");
Serial.print(y,DEC);
Serial.print(", position= ");
Serial.print(yPosition);
Serial.print(", brightness= ");
Serial.println(yBrightness);
Serial.println();

6.14 Getting Location from a GPS

Problem

You want to determine location using a GPS module.

Solution

A number of fine Arduino-compatible GPS units are available today. Most use a familiar
serial interface to communicate with their host microcontroller using a protocol known
as NMEA 0183. This industry standard provides for GPS data to be delivered to “lis-
tener” devices such as Arduino as human-readable ASCII “sentences.” For example,
the following NMEA sentence:

$GPGLL,4916.45,N,12311.12,W,225444,A,*1D

describes, among other things, a location on the globe at 49 16.45' North latitude by
123 11.12' West longitude.

To establish location, your Arduino sketch must parse these strings and convert the
relevant text to numeric form. Writing code to manually extract data from NMEA
sentences can be tricky and cumbersome in the Arduino’s limited address space, but
fortunately there is a useful library that does this work for you: Mikal Hart’s TinyGPS.
Download it from http://arduiniana.org/ and install it. (For instructions on installing
third-party libraries, see Chapter 16.)

The general strategy for using a GPS is as follows:
1. Physically connect the GPS device to the Arduino.
2. Read serial NMEA data from the GPS device.
3. Process the data to determine location.
Using TinyGPS you do the following;:
1. Physically connect the GPS device to the Arduino.
2. Create a TinyGPS object.
3. Read serial NMEA data from the GPS device.
4. Process each byte with TinyGPS’s encode() method.
5. Periodically query TinyGPS’s get_position() method to determine location.

6.14 Getting Location fromaGPS | 201

http://arduiniana.org/

The following sketch illustrates how you can acquire data from a GPS attached to
Arduino’s serial port. It lights the built-in LED connected to pin 13 whenever the device
is in the Southern Hemisphere:

// A simple sketch to detect the Southern Hemisphere
// Assumes: LED on pin 13, GPS connected to Hardware Serial pins 0/1

#include "TinyGPS.h"
TinyGPS gps; // create a TinyGPS object

#define HEMISPHERE PIN 13
void setup()
{

Start serial communications using the rate required by your GPS. See Chapter 4 if you
need more information on using Arduino serial communications:
Serial.begin(4800); // GPS devices frequently operate at 4800 baud

pinMode (HEMISPHERE_PIN, OUTPUT);
digitalWrite(HEMISPHERE_PIN, LOW); // turn off LED to start

void loop()
{

while (Serial.available())
{

int ¢ = Serial.read();

// Encode() each byte

// Check for new position if encode() returns "True"
if (gps.encode(c))

{

long lat, lon;
gps.get_position(&lat, &lon);
if (lat < 0) // Southern Hemisphere?
digitalWrite(HEMISPHERE PIN, HIGH);
else
digitalWrite(HEMISPHERE PIN, LOW);
}

}
}

Here a 4,800 baud connection is established with the GPS. Once bytes begin flowing,
they are processed by encode(), which parses the NMEA data. A true return from
encode() indicates that TinyGPS has successfully parsed a complete sentence and that
fresh position data may be available. This is a good time to check the device’s current
location with a call to get_position().

TinyGPS’s get_position() returns the most recently observed latitude and longitude.
The example examines latitude; if it is less than zero, that is, south of the equator, the
LED is illuminated.

202 | Chapter6: Getting Input from Sensors

Discussion

Attaching a GPS unit to an Arduino is usually as simple as connecting two or three data
lines from the GPS to input pins on the Arduino. Using the popular USGlobalSat
EM-406A GPS module as an example, you can connect the lines as shown in Table 6-1.

Table 6-1. EM-406A GPS pin connections

EM-406A line Arduino pin
GND Gnd

VIN +Vec

RX TX (pin 1)
X RX (pin 0)
GND Gnd

Some GPS modules use RS-232 voltage levels, which are incompatible
with Arduino’s TTL logic. These require some kind of intermediate logic
W conversion device like the MAX232 integrated circuit.

The code in this recipe’s Solution assumes that the GPS is connected directly to
Arduino’s built-in serial port, but this is not usually the most convenient design. In
many projects, the hardware serial port is needed to communicate with a host PC or
other peripheral and cannot be used by the GPS. In cases like this, select another pair
of digital pins and use a serial port emulation (“soft serial”) library to talk to the GPS
instead.

SoftwareSerial is the emulation library that currently ships with the Arduino IDE, but
it is inadequate for most GPS processing, especially for modern devices that commu-
nicate at higher speeds. As of Arduino revision 0015, the most robust and popular “soft
serial” package is a third-party library called NewSoftSerial, also published at http://
arduiniana.org/. From the programmer’s point of view, NewSoftSerial is used similarly
to hardware serial, so migrating is not usually very difficult. (For a more detailed dis-
cussion on using NewSoftSerial, see Recipes 4.13 and 4.14.)

You can move the GPS’s RX and TX lines to pins 2 and 3 to free up the hardware serial
port for debugging. Leaving the serial cable connected to the host PC, modify the pre-
ceding sketch to use NewSoftSerial to get a detailed glimpse of TinyGPS in action
through the Arduino’s Serial Monitor:

// Another simple sketch to detect the Southern Hemisphere

// Assumes: LED on pin 13, GPS connected to pins 2/3
// (Optional) Serial debug console attached to hardware serial port 0/1

#include "TinyGPS.h"
#include "NewSoftSerial.h"

6.14 Getting LocationfromaGPS | 203

http://arduiniana.org/
http://arduiniana.org/

#define HEMISPHERE_PIN 13
#define GPS_RX PIN 2
#define GPS_TX PIN 3

TinyGPS gps; // create a TinyGPS object
NewSoftSerial nss(GPS_RX_PIN, GPS_TX_PIN); // create soft serial object

void setup()

Note that you can use a different baud rate for connection to the Serial Monitor and
the GPS:

Serial.begin(9600); // for debugging

nss.begin(4800); // Use NewSoftSerial object to talk to GPS

pinMode (HEMISPHERE_PIN, OUTPUT);
digitalWrite(HEMISPHERE PIN, LOW); // turn off LED to start

}

void loop()

while (nss.available())
{

int ¢ = nss.read();
Serial.print(c, BYTE); // display NMEA data for debug

// Send each byte to encode()

// Check for new position if encode() returns "True"
if (gps.encode(c))

{

long lat, lon;
gps.get position(&lat, &lon);

// Display new lat/lon on debug console
Serial.print("Lat: "); Serial.print(lat);
Serial.print(" Lon: "); Serial.println(lon);

if (lat < 0) // Southern Hemisphere?
digitalWrite(HEMISPHERE PIN, HIGH);
else
digitalWrite(HEMISPHERE PIN, LOW);

}
}

This new sketch behaves exactly the same as the earlier example but is much easier to
debug. At any time, you can simply hook a monitor up to the built-in serial port to
watch the NMEA sentences and TinyGPS data scrolling by.

When power is turned on, a GPS unit immediately begins transmitting NMEA senten-
ces. But because it usually takes awhile to establish a fix—up to two minutes in some
cases—these early sentences typically do not contain valid location data. Stormy
weather or the presence of buildings or other obstacles may also interfere with the GPS’s

204 | Chapter6: Getting Input from Sensors

ability to pinpoint location. So, how does the sketch know whether TinyGPS is deliv-
ering valid position data? The answer lies in the third parameter to get_position(), the
optional fix_age.

If you supply a pointer to an unsigned long variable as get_position()’s third param-
eter, TinyGPS sets it to the number of milliseconds since the last valid position data
was acquired; see also Recipe 2.11. A value of OXFFFFFFFF here (symbolically,
GPS_INVALID AGE) means TinyGPS has not yet parsed any valid sentences containing
position data. In this case, the returned latitude and longitude are invalid as well
(GPS_INVALID ANGLE).

Under normal operation, you can expect to see quite low values for fix_age. Modern
GPS devices are capable of reporting position data as frequently as one to five times per
second or more, so a fix_age in excess of 2,000 ms or so suggests that there may be a
problem. Perhaps the GPS is traveling through a tunnel or a wiring flaw is corrupting
the NMEA data stream, invalidating the checksum (a calculation to check that the data
is not corrupted). In any case, a large fix_age indicates that the coordinates returned
by get position() are stale. The following code is an example of how fix_age can be
used to ensure that the position data is fresh:
long lat, lon;
unsigned long fix_age;
gps.get position(&lat, &lon, &fix age);
if (fix_age == TinyGPS::INVALID AGE)
Serial.println("No fix ever detected!");
else if (fix_age > 2000)
Serial.println("Data is getting STALE!");
else
Serial.println("Latitude and longitude valid!");

See Also

TinyGPS and NewSoftSerial are available for download at http://arduiniana.org/libra
ries/newsoftserial.

For a deeper understanding of the NMEA protocol, read the Wikipedia article at http:
/len.wikipedia.org/wiki/NMEA.

Several shops sell GPS modules that interface well with TinyGPS and Arduino. These
differ mostly in power consumption, voltage, accuracy, physical interface, and whether
they support serial NMEA. SparkFun (http://www.sparkfun.com) carries a large range
of GPS modules and has an excellent buyer’s guide.

GPS technology has inspired lots of creative Arduino projects. A very popular example
is the GPS data logger, in which a moving device records location data at regular in-
tervals to the Arduino EEPROM or other on-board storage. See the breadcrumbs
project at http://code.google.com/p/breadcrumbs/wiki/UserDocument for an example.
Ladyada makes a popular GPS data logging shield; see http://www.ladyada.net/make/
gpsshield/.

6.14 Getting LocationfromaGPS | 205

http://arduiniana.org/libraries/newsoftserial
http://arduiniana.org/libraries/newsoftserial
http://en.wikipedia.org/wiki/NMEA
http://en.wikipedia.org/wiki/NMEA
http://www.sparkfun.com
http://code.google.com/p/breadcrumbs/wiki/UserDocument
http://www.ladyada.net/make/gpsshield/
http://www.ladyada.net/make/gpsshield/

Other interesting GPS projects include hobby airplanes and helicopters that maneuver
themselves to preprogrammed destinations under Arduino software control. Mikal
Hart built a GPS-enabled “treasure chest” with an internal latch that cannot be opened
until the box is physically moved to a certain location. See http://arduiniana.org.

6.15 Detecting Rotation Using a Gyroscope

Problem

You want to respond to the rate of rotation. This can be used to keep a vehicle moving
in a straight line or turning at a desired rate.

Solution

Most low-cost gyroscopes use an analog voltage proportional to rotation rate, although
some also provide output using 12C (see Chapter 13 for more on using 12C to
communicate with devices). This recipe works with a gyro with an analog output pro-
portional to rotation rate. Figure 6-16 shows an LISY300AL breakout board from
SparkFun. Many low-cost gyros, such as the one used here, are 3.3V devices and must
not be plugged into the 5V power pin.

Check the maximum voltage of your gyro before connecting power.
Plugging a 3.3V gyro into 5 volts can permanently damage the device.

soo2 s o0 lyeeeneets

E57777 piGimAL =2
Accelerometer
. —
5T
Arduino " X
“ !
X
‘ L‘ EGND Y
- ('“\ N EQ:-EE = ANALOG 3 Y00
SIOR. - of-~s3ec

Figure 6-16. LISY300AL gyro connected using 3.3V pin

The Gyro OUT connection is the analog output and is connected to Arduino analog
input 0. The PD connection enables the gyro to be switched into low power mode and

206 | Chapter6: Getting Input from Sensors

http://arduiniana.org

is connected to analog pin 1 (in this sketch, it is used as a digital output pin). You can
connect PD to any digital pin; the pin used here was chosen to keep the wiring neater.
If you don’t need to switch the gyro into low-power mode, you can connect the PD line
to Gnd.

W

Analog pins can also be used as digital pins 14 to 19 if they are not needed
for reading analog values. See the introduction to Chapter 5 for more
% on using Arduino analog and digital pins.

The ST (self-test) line is for testing and can be left unconnected:

/*
gyro sketch

displays the rotation rate on the Serial Monitor
*/

const int inputPin = 0; // analog input 0
const int powerDownPin = 15; // analog input 1 is digital input 15

int rotationRate = 0;
void setup()
{

Serial.begin(9600); // sets the serial port to 9600
pinMode (powerDownPin, OUTPUT);
digitalWrite(powerDown, LOW); // gyro not in power down mode

}
void loop()
{

rotationRate = analogRead(inputPin); // read the gyro output
Serial.print("rotation rate is ");

Serial.println(rotation rate);

delay(100); // wait 100ms for next reading

Discussion

This sketch sets the powerDownPin to LOW to get the gyro running in normal mode (you
can eliminate this code from setup if you have wired the PD pin to Gnd).

W N

- Analog input pins can be used as digital pins (but not the other way
around). Analog input 0 is digital pin 14; analog input 1 is digital pin
s 15, and so on.

The loop code reads the gyro value on analog pin 0 and displays this on the Serial
Monitor.

6.15 Detecting Rotation Using a Gyroscope | 207

6.16 Detecting Direction

Problem

You want your sketch to determine direction from an electronic compass.

Solution

This recipe uses the HM55B compass module from Parallax (#29123). Figure 6-17

shows the connections:
/*
HM55bCompass sketch
uses 'software SPI' serial protocol implemented using Arduino bit functions
(see Chapter 3)
prints compass angle to Serial Monitor

*/

const int enablePin = 2;
const int clockPin = 3;
const int dataPin 4;

// command codes (from HM55B data sheet)

const byte COMMAND_LENGTH = 4; // the number of bits in a command

const byte RESET_COMMAND = B0000; // reset the chip

const byte MEASURE_COMMAND = B1000; // start a measurement

const byte READ_DATA_COMMAND = B1100; // read data and end flag

const byte MEASUREMENT_READY = B1100; // value returned when measurement complete

int angle;
void setup()
{

Serial.begin(9600);
pinMode(enablePin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, INPUT);

reset(); // reset the compass module

}
void loop()
{
startMeasurement();
delay(40); // wait for the data to be ready
if (readStatus()==MEASUREMENT READY); // check if the data is ready
angle = readMeasurement(); //read measurement and calculate angle
Serial.print("Angle = ");
Serial.println(angle); // print angle

}
delay(100);

208 | Chapter6: Getting Input from Sensors

void reset()

pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);

serialOut (RESET_COMMAND, COMMAND_LENGTH);
digitalWrite(enablePin, HICH);

}

void startMeasurement()

{
pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);
serialOut (MEASURE_COMMAND, COMMAND LENGTH);
digitalWrite(enablePin, HICH);

}

int readStatus()

{
int result = 0;
pinMode(dataPin, OUTPUT);
digitalWrite(enablePin, LOW);
serialOut (READ_DATA COMMAND, COMMAND LENGTH);
result = serialln(4);
return result; // returns the status

}

int readMeasurement()
{
int X Data = 0;
int Y Data = 0;
int calcAngle = 0;
X Data = serialln(11); // Field strength in X
Y Data = serialln(11); // and Y direction
digitalWrite(enablePin, HIGH); // deselect chip
calcAngle = atan2(-Y Data , X Data) / M_PI * 180; // angle is atan(-y/x)
if(calcAngle < 0)
calcAngle = calcAngle + 360; // angle from 0 to 259 instead of plus/minus 180
return calcAngle;

}

void serialOut(int value, int numberOfBits)
{
for(int i = numberOfBits; i > 0; i--) // shift the MSB first
{
digitalWrite(clockPin, LOW);
if(bitRead(value, i-1) == 1)
digitalWrite(dataPin, HIGH);
else
digitalWrite(dataPin, LOW);
digitalWrite(clockPin, HIGH);
}
}

int serialIn(int numberOfBits)

{

6.16 Detecting Direction | 209

int result = 0;

pinMode(dataPin, INPUT);
for(int i = numberOfBits; i > 0; i--) // get the MSB first

digitalWrite(clockPin, HIGH);
if (digitalRead(dataPin) == HIGH)
result = (result << 1) + 1;
else
result = (result << 1) + 0;
digitalWrite(clockPin, LOW);
}

// the following converts the result to a twos-complement negative number
// if the most significant bit in the 11 bit data is 1
if(bitRead(result, 11) == 1)

result = (B11111000 << 8) | result; // twos complement negation

return result;

}

Controller Pins

(looking at plug)
o Data
A Z ® o Command
g)
4 C
R 3 C
D TK?E Gnd [}
U e +5 Volts G
| © At
RESET E
3V
N iy E © Clock
Gnd
0 nd [3 O
vin [
o} Ack

Figure 6-17. HM55B compass connections

210 | Chapter6: Getting Input from Sensors

Discussion

The compass module provides magnetic field intensities on two perpendicular axes (x
and y). These values vary as the compass orientation is changed with respect to the
Earth’s magnetic field (magnetic north).

The data sheet for the device tells you what values to send to reset the compass; check
if a valid reading is ready (if so, it will transmit it).

The sketch uses the functions serialIn() and serialOut() to handle the pin manipu-
lations that send and receive messages.

The compass module is initialized into a known state in the reset() function called
from setup(). The startMeasurement() function initiates the measurement, and after a
brief delay, the readStatus() function indicates if the data is ready. A value of 0 is
returned if the measurement is not ready, or 12 (binary 1100) if the compass is ready
to transmit data.

Eleven bits of data are read into the X _Data and Y_Data variables. If you use a different
device, you will need to check the data sheet to see how many bits and in what format
the data is sent. X_Data and Y_Data store the magnetic field readings, and the angle to
magnetic north is calculated as follows: Radians = arctan(-x/y)
This is implemented in the sketch in the line:

angle = 180 * (atan2(-1 * Y Data , X Data) / M PI);
To make a servo follow the compass direction over the first 180 degrees, add the
following;:

#include <Servo.h>
Servo myservo;

in setup:
myservo.attach(8);

and in loop after the angle is calculated:

angle = constrain(angle, 0,180); // the servo is driven only up to 180
degrees
myservo.write(angle);

6.17 Getting Input from a Game Control Pad (PlayStation)

Problem

You want to respond to joystick positions or button presses from a game control pad.

6.17 Getting Input from a Game Control Pad (PlayStation) | 211

Solution

This recipe uses a Sony PlayStation 2—style controller with the PSX library at http://
www.arduino.cc/playground/Main/PSXLibrary; Figure 6-18 shows the connections.

AREFCY

seccsoolocsesses
@ DIGITAL mE

Accelerometer
-
ST
o
of T
X Y

r‘ a GND

ANALOG =] VoD

= e = L

® TDDDD

Arduino

T o o
= -)

N
"_/'
Ty
N
[JRESET
[J3v3

Figure 6-18. PlayStation controller plug connected to Arduino

The sketch uses the Serial Monitor to show which button is pressed:

/*
PSX sketch

*
*

* Display joystick and button values

* uses PSX library written by Kevin Ahrendt

* http://www.arduino.cc/playground/Main/PSXLibrary

*/
#include <wProgram.h>
#include <Psx.h> // Includes the Psx Library
Psx Psx; // Create an instance of the Psx library

const int dataPin = 5;

const int cmndPin = 4;

const int attPin = 3;

const int clockPin = 2;

const int psxDelay = 50; // determine the clock delay in microseconds
unsigned int data = 0; // data stores the controller response

void setup()

// initialize the Psx library
Psx.setupPins(dataPin, cmndPin, attPin, clockPin, psxDelay);
Serial.begin(9600); // results will be displayed on the Serial Monitor

212 | Chapter6: Getting Input from Sensors

http://www.arduino.cc/playground/Main/PSXLibrary
http://www.arduino.cc/playground/Main/PSXLibrary

void loop()
data = Psx.read(); // get the psx controller button data

// check the button bits to see if a button is pressed
if(data & psxLeft)
Serial.println("left button");
if(data & psxDown)
Serial.println("down button");
if(data & psxRight)
Serial.println("right button");
if(data & psxUp)
Serial.println("up button");
if(data & psxStrt)
Serial.println("start button");
if(data & psxSlct)
Serial.println("select button");

delay(100);

Discussion

Game controllers provide information in many different ways. Most recent controllers
contain chips that read the switches and joystick in the controller and communicate
the information using a protocol depending on the game platform. Older controllers
are more likely to give direct access to switches and joysticks using connectors with
many connections. The latest wave of game platforms uses USB as the connection.
These are more difficult to work with using Arduino.

See Also
Recipe 4.1; Recipe 4.11

PlayStation controller protocol: http://lwww.gamesx.com/controldata/psxcont/psxcont
Jhtm

6.18 Reading Acceleration

Problem

You want to respond to acceleration; for example, to detect when something starts or
stops moving. Or you want to detect how something is oriented with respect to the
Earth’s surface (measure acceleration due to gravity).

6.18 Reading Acceleration | 213

http://www.gamesx.com/controldata/psxcont/psxcont.htm
http://www.gamesx.com/controldata/psxcont/psxcont.htm

Solution

Like many of the sensors discussed in this chapter, there is a wide choice of devices and
methods of connection. Recipe 4.11 gave an example of a virtual joystick using the
accelerometer in the Wii nunchuck to follow hand movements. Recipe 13.2 has more
information on using the Wii nunchuck accelerometer. The recipe here uses analog
output proportional to acceleration. Suitable devices include the ADXIL.203CE (SF
SEN-00844), ADXL320 (SF SEN 00847), and MMA7260Q (SF SEN00252)—check the
SparkFun accelerometer selection guide on the SparkFun website for more information.

Figure 6-19 shows the connections for the x- and y-axes of an analog accelerometer.

00000000JN0000000 0

Sohea Moka=ened

= DIGITAL =z
Accelerometer
' —
ST
Arduino s T 5
cc Y :| T
X
‘ L‘ a GND Y
Z VoD
B e MM 0]
v 00 ”m

Figure 6-19. Connections for x- and y-axes of an analog accelerometer

Check the data sheet for your device to ensure that you don’t exceed
‘E’% the maximum voltage. Many accelerometers are designed for 3.3V op-

eration and can be damaged if connected to the 5V power connection
on an Arduino board.

214 | Chapter6: Getting Input from Sensors

The simple sketch here uses the ADXL320 to display the acceleration in the x- and
y-axes:
/*
accel sketch
simple sketch to output values on the x- and y-axes

*/

const int xPin = 0; // analog input pins
const int yPin = 1;

void setup()

Serial.begin(9600); // note the higher than usual serial speed
}

void loop()
{

int xvalue; // values from accelerometer stored here
int yValue;

xValue = analogRead(xPin);
yValue = analogRead(yPin);

Serial.print("X value = ");
Serial.println(xValue);

Serial.print("Y value = ");
Serial.println(yvalue);
delay(100);

}

Discussion

You can use techniques from the previous recipes to extract information from the ac-
celerometer readings. You might need to check for a threshold to work out movement.
You may need to average values like the sound example to get values that are of use. If
the accelerometer is reading horizontally, you can use the values directly to work out
movement. If it is reading vertically, you will need to take into account the effects of
gravity on the values. This is similar to the DC offset in the audio example, but it can
be complicated, as the accelerometer may be changing orientation so that the effect of
gravity is not a constant value for each reading.

See Also

SparkFun selection guide: http://www.sparkfun.com/commerce/tutorial_info.php?tuto
rials_id=167

6.18 Reading Acceleration | 215

http://www.sparkfun.com/commerce/tutorial_info.php?tutorials_id=167
http://www.sparkfun.com/commerce/tutorial_info.php?tutorials_id=167

CHAPTER 7
Visual Qutput

7.0 Introduction

Visual output lets the Arduino show off, and toward that end, the Arduino supports a
broad range of LED devices. Before delving into the recipes in this chapter, we’ll discuss
Arduino digital and analog output. This introduction will be a good starting point if
you are not yet familiar with using digital and analog outputs (digitalWrite and
analoghirite).

Digital Qutput

All the pins that can be used for digital input can also be used for digital output.
Chapter 5 provided an overview of the Arduino pin layout; you may want to look
through the introduction section in that chapter if you are unfamiliar with connecting
things to Arduino pins.

Digital output causes the voltage on a pin to be either high (5 volts) or low (0 volts).
Use the digitalWrite(outputPin, value) function to turn something on or off. The
function has two parameters: outputPin is the pin to control, and value is either HIGH
(5 volts) or LOW (0 volts).

For the pin voltage to respond to this command, the pin must have been set in output
mode using the pinMode(outputPin, OUTPUT) command. The sketch in Recipe 7.1 pro-
vides an example of how to use digital output.

Analog Output

Analog refers to levels that can be gradually varied up to their maximum level (think of
light dimmers and volume controls). Arduino has an analoghirite function that can be
used to control such things as the intensity of an LED connected to the Arduino.

The analoghirite function is not truly analog, although it can behave like analog, as you
will see. analoghirite uses a technique called Pulse Width Modulation (PWM) that
emulates an analog signal using digital pulses.

217

PWM works by varying the proportion of the pulses’ on time to off time, as shown in
Figure 7-1. Low-level output is emulated by producing pulses that are on for only a
short period of time. Higher level output is emulated with pulses that are on more than
they are off. When the pulses are repeated quickly enough (almost 500 times per second
on Arduino), the pulsing cannot be detected by human senses, and the output from
things such as LEDs looks like it is being smoothly varied as the pulse rate is changed.

HIGH LED not lit: analogWrite(pin, 0) [0% duty cycle]
(5 Volts)

LOW
(0Volts)

LED is dim: analogWrite(pin, 63) [25% duty cycle]

HIGH

LOW

LED half brightness: analogWrite(pin, 127) [50% duty cycle]

HIGH

LOW

LED % brightness: analogWrite(pin, 191) [75% duty cydle]

HIGH

LOW

LED full brightness: analogWrite(pin, 255) [100% duty cycle]

HIGH

LOW

Figure 7-1. PWM output for various analogWrite values

Arduino has a limited number of pins that can be used for analog output. On a standard
board, you can use pins 3, 5, 6, 9, 10, and 11. On the Arduino Mega board, you can
use pins 2 through 13 for analog output. Many of the recipes that follow use pins that
can be used for both digital and analog to minimize rewiring if you want to try out
different recipes. If you want to select different pins for analog output, remember to
choose one of the supported analoghrite pins (other pins will not give any output).

Controlling Light

Controlling light using digital or analog output is a versatile, effective, and widely used
method for providing user interaction. Single LEDs, arrays, and numeric displays are

218 | Chapter7: Visual Qutput

covered extensively in the recipes in this chapter. LCD text and graphical displays re-
quire different techniques and are covered in Chapter 11.

LED specifications

An LED is a semiconductor device (diode) with two leads, an anode and a cathode.
When the voltage on the anode is more positive than that on the cathode (by an amount
called the forward voltage) the device emits light (photons). The anode is usually the
longer lead, and there is often a flat spot on the housing to indicate the cathode (see
Figure 7-2). The LED color and the exact value of the forward voltage depend on the
construction of the diode.

A typical red LED has a forward voltage of around 1.8 volts. If the voltage on the anode
is not 1.8 volts more positive than the cathode, no current will flow through the LED
and no light will be produced. When the voltage on the anode becomes 1.8 volts more
positive than that on the cathode, the LED “turns on” (conducts) and effectively be-
comes a short circuit. You must limit the current with a resistor, or the LED will (sooner
or later) burn out. Recipe 7.1 shows you how to calculate values for current limiting
resistors.

You may need to consult an LED data sheet to select the correct LED for your appli-
cation, particularly to determine values for forward voltage and maximum current.
Tables 7-1 and 7-2 show the most important fields you should look for on an LED data
sheet.

Table 7-1. Key data sheet specifications: absolute maximum ratings

Parameter Symbol Rating Units Comment

Forward current If 25 mA The maximum continuous current for this LED
Peak forward current (1/10duty@ If 160 mA The maximum pulsed current (given here for a
1KHz) pulse thatis 1/10 on and 9/10 off)

Table 7-2. Key data sheet specifications: electro-optical characteristics

Parameter Symbol Rating Units Comment
Luminous intensity Iv 2 mcd If =2 mA - brightness with 2 mA current

Iv 40 mcd If =20 mA - brightness with 20 mA current
Viewing angle 120 Degrees The beam angle
Wavelength 620 nm The dominant or peak wavelength (color)
Forward voltage i 18 Volts The voltage across the LED when on

Arduino pins can supply up to 40 mA of current. This is plenty for a typical medium-
intensity LED, but not enough to drive the higher brightness LEDs or multiple LEDs
connected to a single pin. Recipe 7.3 shows how to use a transistor to increase the
current through the LED.

7.0 Introduction | 219

Multicolor LEDs consist of two or more LEDs in one physical package. These may have
more than two leads to enable separate control of the different colors. There are many
package variants, so you should check the data sheet for your LED to determine how
to connect the leads.

W
o Self-color-changing, multicolor LEDs with an integrated chip cannot be
"‘:‘ controlled in any way; you can’t change their colors from Arduino.
T 98 Because PWM rapidly cycles the power on and off, you are effectively
" rebooting the integrated chip many times each second, so these LEDs
are unsuitable for PWM applications as well.

Multiplexing

Applications that need to control many LEDs can use a technique called multiplexing.
Multiplexing works by switching groups of LEDs (usually arranged in rows or columns)
in sequence. Recipe 7.11 shows how 32 individual LEDs (eight LEDs per digit, includ-
ing decimal point) with four digits can be driven with just 12 pins. Eight pins drive a
digit segment for all the digits and four pins select which digit is active. Scanning
through the digits quickly enough (at least 25 times per second) creates the impression
that the lights remain on rather than pulsing, through the phenomenon of persistence
of vision.

Charlieplexing uses multiplexing along with the fact that LEDs have polarity (they only
illuminate when the anode is more positive than the cathode) to switch between two
LEDs by reversing the polarity.

7.1 Connecting and Using LEDs

Problem

You want to control one or more LEDs and select the correct current-limiting resistor
so that you do not damage the LEDs.

Solution

Turning an LED on and off is easy to do with Arduino, and some of the recipes in
previous chapters have included this capability (see Recipe 5.1 for an example that
controls the built-in LED on pin 13). The recipe here provides guidance on choosing
and using external LEDs. Figure 7-2 shows the wiring for three LEDs, but you can run
this sketch with just one or two.

220 | Chapter7: Visual Qutput

0000 0g e L 0 S
j €2 DIGITAL = N
H a a
Arduino o v —
oo k k
flat
‘ L‘ 00 w3
Ohm Ohm $ 2 k
. & ANALOG Longer .
- (V) E228EE ormiman Lead
U OooopO 0oooog

Figure 7-2. Connecting external LEDs

W N

The schematic symbol for the cathode (the negative pin) is k, not ¢. The
schematic symbol ¢ is used for a capacitor.

The following sketch lights up three LEDs connected to pins 3, 5, and 6 in sequence
for one second:

/¥

LEDs sketch

Blink three LEDs each connected to a different digital pin

*/

const int firstlLedPin = 3; // choose the pin for each of the LEDs
const int secondLedPin = 5;

const int thirdlLedPin = 6;

void setup()
{

pinMode(firstLedPin, OUTPUT); // declare LED pins as output

pinMode(secondLedPin, OUTPUT); // declare LED pins as output

pinMode(thirdLedPin, OUTPUT); // declare LED pins as output
}

void loop()
{

// flash each of the LEDs for 1000 milliseconds (1 second)
blinkLED(firstLedPin, 1000);
blinkLED(secondLedPin, 1000);
blinkLED(thirdLedPin, 1000);
}

7.1 Connecting and Using LEDs | 221

// blink the LED on the given pin for the duration in milliseconds
void blinkLED(int pin, int duration)

digitalWrite(pin, HICH); // turn LED on
delay(duration);
digitalWrite(pin, LOW); // turn LED off
delay(duration);

The sketch sets the pins connected to LEDs as output in the setup function. The loop
function calls blinkLED to flash the LED for each of the three pins. blinkLED sets the
indicated pin HIGH for one second (1,000 milliseconds).

Discussion

Because the anodes are connected to Arduino pins and the cathodes are connected to
ground, the LEDs will light when the pin goes HIGH and will be off when the pin is low.
If you had connected the LEDs the other way around (the cathodes to the pins and the
anodes to ground), the LEDs would light when the pin goes LOW (the visual effect would
reverse—one of the LEDs would turn off for a second while the other two would be lit).

W
o LEDs require a series resistor to control the current or they can quickly
"‘:‘ burn out. The built-in LED on pin 13 has a resistor on the circuit board.
T Qlay External LEDs need to be connected through a series resistor on either

* the anode or the cathode.

A resistor in series with the LED is used to control the amount of current that will flow
when the LED conducts. To calculate the resistor value you need to know the input
power supply voltage (Vs, usually 5 volts), the LED forward voltage (Vf), and the
amount of current (I) that you want to flow through the LED.

The formula for the resistance in ohms (known as Ohm’s law) is: R = (Vs - Vf) / I

For example, driving an LED with a forward voltage of 1.8 volts with 15 mA of current
using an input supply voltage of 5 volts would use the following values:

Vs =5 (for a 5V Arduino board)

Vi = 1.8 (the forward voltage of the LED)

[=0.015 (1 milliamp [mA] is one one-thousandth of an amp, so 15 mA is 0.015
amps)

The voltage across the LED when it is on (Vs - Vi) is: 5 - 1.8, which is 3.2 volts
Therefore, the calculation for the series resistor is: 3.2 / 0.015, which is 213 ohms

The value of 213 ohms is not a standard resistor value, so you can round this up to
220 ohms.

222 | Chapter7: Visual Qutput

The resistor is shown in Figure 7-2 connected between the cathode and ground, but it
can be connected to the other side of the LED instead (between the voltage supply and
the anode).

Arduino pins have a maximum current of 40 mA. If your LED needs
more current than this, you should use a transistor to switch the LED,

as shown in Recipe 7.3.

See Also
Recipe 7.3

7.2 Adjusting the Brightness of an LED

Problem

You want to control the intensity of one or more LEDs from your sketch.

Solution

Connect each LED to an analog (PWM) output. Use the wiring shown in Figure 7-2.
The sketch will fade the LED(s) from off to maximum intensity and back to off, with
each cycle taking around five seconds:
J*
* LedBrightness sketch
* controls the brightness of LEDs on analog output ports

*/

const int firstled = 3; // specify the pin for each of the LEDs
const int secondLed = 5;
const int thirdlLed 6;

int brightness = 0;
int increment = 1;

void setup()
{

// pins driven by analogWrite do not need to be declared as outputs

void loop()
{ if(brightness > 255)
increment = -1; // count down after reaching 255
else if(brightness < 1)

increment = 1; // count up after dropping back down to 0

7.2 Adjusting the Brightness of an LED | 223

}

brightness = brightness + increment; // increment (or decrement sign is minus)

// write the brightness value to the LEDs
analogWrite(firstled, brightness);
analogWrite(secondlLed, brightness);
analogWrite(thirdLed, brightness);

delay(10); // 10ms for each step change means 2.55 secs to fade up or down

}

Discussion

This uses the same wiring as the previous sketch, but here the pins are controlled us-
ing analoghrite instead of digitalWrite. analoghrite uses PWM to control the power
to the LED; see this chapter’s introduction section for more on analog output.

The sketch fades the light level up and down by increasing (on fade up) or decreasing
(on fade down) the value of the brightness variable in each pass through the loop. This
value is given to the analoghirite function for the three connected LEDs. The minimum
value for analoghrite is 0—this keeps the voltage on the pin at 0. The maximum value
is 255, and this keeps the pin at 5 volts.

When the brightness variable reaches the maximum value, it will start to decrease,
because the sign of the increment is changed from +1 to -1 (adding -1 to a value is the
same as subtracting 1 from that value).

See Also

This chapter’s introduction describes how Arduino analog output works.

7.3 Driving High-Power LEDs

Problem

You need to switch or control the intensity of LEDs that need more power than the
Arduino pins can provide. Arduino pins can only handle current up to 40 mA.

Solution

Use a transistor to switch on and off the current flowing through the LEDs. Connect
the LED as shown in Figure 7-3. You can use the same code as shown in the previous
recipes (just make sure the pins connected to the transistor base match the pin number
used in your sketch).

224 | Chapter7: Visual Qutput

Additional LEDs
connected like
this: To+V
~ » Power
Source

OoO=Z=—C O o=

To
. Power
"~ Source
Ground

Figure 7-3. Using transistors to drive high-current LEDs

Discussion

The LEDs may need a power source separate from the Arduino if the total current is
more than a few hundred mA. See Appendix C for information on using an external
power supply.

W N
- Remember to connect the ground of the external supply to the Arduino
ground.

Current is allowed to flow from the collector to the emitter when the transistor is
switched on. No significant current flows when the transistor is off. The Arduino can
turn a transistor on by making the voltage on a pin HIGH with digitalWrite. A resistor
is necessary between the pin and the transistor base to prevent too much current from
flowing—1K ohms is a typical value (this provides 5 mA of current to the base of the
transistor). See Appendix B for advice on how to read a data sheet and pick and use a
transistor. You can also use specialized integrated circuits such as the ULN2003A for
driving multiple outputs. These contain seven high-current (0.5 amp) output drivers.

The resistor used to limit the current flow through the LED is calculated using the
technique given in Recipe 7.1, but you may need to take into account that the source
voltage will be reduced slightly because of the small voltage drop through the transistor.

7.3 Driving High-Power LEDs | 225

This will usually be less than three-fourths of a volt (the actual value can be found by
looking at collector-emitter saturation voltage; see Appendix B). High-current LEDs (1
watt or more) are best driven using a constant current source (a circuit that actively
controls the current) to manage the current through the LED.

See Also

Web reference for constant current drivers: http://blog.makezine.com/archive/2009/08/
constant_current_led_driver.html

7.4 Adjusting the Color of an LED

Problem

You want to control the color of an RGB LED under program control.

Solution

RGB LEDs have red, green, and blue elements in a single package with either the anodes
connected together (known as common anode) or the cathodes connected together
(known as common cathode). Use the wiring in Figure 7-4 for common anode (the
anodes are connected to +5 volts and the cathodes are connected to pins). Use Fig-
ure 7-2 if your RGB LEDs are common cathode.

G B
r I
e u
e e
n
< 20 2
> Ohm
k
XA c'-
a
- &, - ANALOG
- I/\) /\ ﬁRaEES S e A
Y OOQO00 0000o0q

Figure 7-4. RGB connections (common anode)

226 | Chapter7: Visual Qutput

http://blog.makezine.com/archive/2009/08/constant_current_led_driver.html
http://blog.makezine.com/archive/2009/08/constant_current_led_driver.html

This sketch continuously fades through the color spectrum by varying the intensity of
the red, green, and blue elements:
/*
* RGB_LEDs sketch
* RGB LEDs driven from analog output ports

*/
const int redPin = 3; // choose the pin for each of the LEDs
const int greenPin =

55
const int bluePin = 6;
const boolean invert = true; // set true if common anode, false if common cathode

int color = 0; // a value from 0 to 255 representing the hue
int R, G, B; // the Red Green and Blue color components

void setup()
{

// pins driven by analogWrite do not need to be declared as outputs

void loop()
{

int brightness = 255; // 255 is maximum brightness

hueToRGB(color, brightness); // call function to convert hue to RGB
// write the RGB values to the pins

analoghrite(redPin, R);

analoghirite(greenPin, G);

analoghrite(bluePin, B);

color++; // increment the color
if(color > 255) //
color = 0;
delay(10);

// function to convert a color to its Red, Green, and Blue components.

void hueToRGB(int hue, int brightness)
{

unsigned int scaledHue = (hue * 6);

unsigned int segment = scaledHue / 256; // segment 0 to 5 around the color
wheel

unsigned int segmentOffset = scaledHue - (segment * 256); // position within
the segment

unsigned int complement = 0;
unsigned int prev = (brightness * (255 - segmentOffset)) / 256;
unsigned int next = (brightness * segmentOffset) / 256;

7.4 Adjusting the Colorofan LED | 227

if(invert)
{
brightness = 255-brightness;
complement = 255;
prev = 255-prev;
next = 255-next;

}

switch(segment) {
case 0: // red

R = brightness;

G = next;

B = complement;
break;

case 1: // yellow
R = prev;
G = brightness;

B = complement;
break;

case 2: // green
R = complement;
G = brightness;

B = next;

break;

case 3: // cyan
R = complement;

G = prev;

B = brightness;
break;

case 4: // blue
R = next;

G = complement;

B = brightness;

break;

case 5: // magenta
default:

R = brightness;

G = complement;

B = prev;
break;
}
}
Discussion

The color of an RGB LED is determined by the relative intensity of its red, green, and
blue elements. The core function in the sketch (hueToRGB) handles the conversion of a
hue value ranging from 0 to 255 into a corresponding color ranging from red through
to blue. The spectrum of visible colors is often represented using a color wheel con-
sisting of the primary and secondary colors with their intermediate gradients. The
spokes of the color wheel representing the six primary and secondary colors are handled
by six case statements. The code in a case statement is executed if the segment variable

228 | Chapter7: Visual Qutput

matches the case number, and if so, the RGB values are set as appropriate for each.
Segment O is red, segment 1 is yellow, segment 2 is green, and so on.

If you also want to adjust the brightness, you can reduce the value of the brightness
variable. The following shows how to adjust the brightness with a variable resistor or
sensor connected as shown in Figure 7-11 or Figure 7-15:

int brightness = map(analogRead(0),0,1023, 0, 255); // get brightness from sensor

The brightness variable will range in value from 0 to 255 as the analog input ranges
from 0 to 1,023, causing the LED to increase brightness as the value increases.

See Also
Recipe 2.16; Recipe 13.1

1.5 Sequencing Multiple LEDs: Creating a Bar Graph

Problem

You want an LED bar graph that lights LEDs in proportion to a value in your sketch
or a value read from a sensor.

Solution

You can connect the LEDs as shown in Figure 7-2 (using additional pins if you want
more LEDs). Figure 7-5 shows six LEDs connected on consecutive pins.

REsET[]
S‘BD a a a a a a
sy [S— Hy Ha Ha o o SZ’)‘
and[J

vin(Q

20 20 20 2 20 WS
Ohm Ohm Ohm Ohm Ohm Ohm<S

1=
3
503
43
I3
23
™10
RY0]

oO=Z—C O X0 =

Figure 7-5. Six LEDs with cathodes connected to Arduino pins

7.5 Sequencing Multiple LEDs: Creating a Bar Graph | 229

The following sketch turns on a series of LEDs, with the number being proportional to
the value of a sensor connected to an analog input port (see Figure 7-11 or Fig-
ure 7-15 to see how a sensor is connected):

/*
Bargraph sketch

Turns on a series of LEDs proportional to a value of an analog sensor.
Six LEDs are controlled but you can change the number of LEDs by changing
the value of NbrLEDs and adding the pins to the ledPins array

*/

const int NbrLEDs =
const int ledPins[]
const int analogInPin
resistor

const int wait = 30;

6;
= 2, 3, 4, 5, 6, 7};
0; // Analog input pin connected to the variable

{

// Swap values of the following two constants if cathodes are connected to Gnd
const boolean LED ON = LOW;
const boolean LED OFF = HIGH;

int sensorValue = 0; // value read from the sensor
int ledLevel = 0; // sensor value converted into LED 'bars'

void setup() {
for (int led = 0; led < NbrLEDs; led++)

pinMode(ledPins[led], OUTPUT); // make all the LED pins outputs

}

void loop() {
sensorValue = analogRead(analogInPin); // read the analog in value
ledLevel = map(sensorValue, 0, 1023, 0, NbrLEDs); // map to the number of LEDs
for (int led = 0; led < NbrLEDs; led++)

if (led < ledlevel) {
digitalWrite(ledPins[led], LED_ON); // turn on pins less than the level

else {
digitalWrite(ledPins[led], LED_OFF); // turn off pins higher than the
level:
}
}
}

Discussion

The pins connected to LEDs are held in the array ledPins. To change the number of
LEDs, you can add (or remove) elements from this array, but make sure the variable
NbrLEDs is the same as the number of elements (which should be the same as the number
of pins). You can have the compiler calculate the value of NbrLEDs for you by replacing
this line:

230 | Chapter7: Visual Qutput

const int NbrLEDs

6;
with this line:
const int NbrLEDs = sizeof(ledPins) / sizof(ledPins[0];

The sizeof function returns the size (number of bytes) of a variable—in this case, the
number of bytes in the ledPins array. Because it is an array of integers (with two bytes
per element), the total number of bytes in the array is divided by the size of one element
(sizeof(ledPins[0])) and this gives the number of elements.

The Arduino map function is used to calculate the number of LEDs that should be lit as
a proportion of the sensor value. The code loops through each LED, turning it on if
the proportional value of the sensor is greater than the LED number. For example, if
the sensor value is 0, no pins are lit; if the sensor is at half value, half are lit. When the
sensor is at maximum value, all the LEDs are lit.

Figure 7-5 shows all the anodes connected together (known as common anode) and the
cathodes connected to the pins; the pins need to be LOW for the LED to light. If the LEDs
have the anodes connected to pins (as shown in Figure 7-2) and the cathodes are con-
nected together (known as common cathode), the LED is lit when the pin goes HIGH.
The sketch in this recipe uses the constant names LED_ON and LED_OFF to make it easy
to select common anode or common cathode connections. To change the sketch for
common cathode connection, swap the values of these constants as follows:

const boolean LED ON = HIGH; // HICGH is on when using common cathode connection
const boolean LED _OFF = LOW;

You may want to slow down the decay (rate of change) in the lights; for example, to
emulate the movement of the indicator of a sound volume meter. Here is a variation
on the sketch that slowly decays the LED bars when the level drops:
/*
LED bar graph - decay version

*/

const int NbrLEDs = sizeof(ledPins) / sizof(ledPins[0];
const int ledPins[] = { 2, 3, 4, 5, 6, 7};
const int analogInPin = 0; // Analog input pin connected to variable resistor

const int decay = 10; // increasing this reduces decay rate of storedValue
int sensorValue = 0; // value read from the sensor

int storedValue = 0; // the stored (decaying) sensor value

int ledlLevel = 0; // value converted into LED 'bars'

void setup() {
for (int led = 0; led < NbrLEDs; led++)

pinMode(ledPins[led], OUTPUT); // make all the LED pins outputs
}
}

7.5 Sequencing Multiple LEDs: Creating a Bar Graph | 231

void loop() {

sensorValue = analogRead(analogInPin); // read the analog in value
storedValue = max(sensorValue, storedValue); // only use sensor value if
higher

ledLevel = map(storedValue, 0, 1023, 0, NbrLEDs); // map to number of LEDs
for (int led = 0; led < NbrLEDs; led++)

if (led < ledLevel) {
digitalWrite(ledPins[led], HICH); // turn on pins less than the level

else {
digitalWrite(ledPins[led], LOW); // turn off pins higher than the level

}
storedValue = storedValue - decay; // decay the value
delay(10); // wait 10 ms before next loop

The decay is handled by the line that uses the max function. This returns either the
sensor value or the stored decayed value, whichever is higher. If the sensor is higher
than the decayed value, this is saved in storedvValue. Otherwise, the level of
storedValue is reduced by the constant decay each time through the loop (set to 10
milliseconds by the delay function). Increasing the value of the decay constant will
reduce the time for the LEDs to fade to all off.

See Also

See Recipes 12.1 and 12.2 if you need greater precision in your decay times. The total
time through the loop is actually greater than 10 milliseconds because it takes an ad-
ditional millisecond or so to execute the rest of the loop code.

Recipe 3.6 explains the max function.
Recipe 5.6 has more on reading a sensor with the analogRead function.

Recipe 5.7 describes the map function.

7.6 Sequencing Multiple LEDs: Making a Chase Sequence
(Knight Rider)

Problem

You want to light LEDs in a “chasing lights” sequence (as seen on the TV show Knight
Rider).

232 | Chapter7: Visual Qutput

Solution

You can use the same connection as shown in Figure 7-5:

/* KnightRider
*/

const int NbrLEDs =
const int ledPins[]
const int wait = 30;

6;
= {2) 3) 4) 5) 6) 7};

void setup(){
for (int led = 0; led < NbrLEDs; led++)

pinMode(ledPins[led], OUTPUT);

}

void loop() {
for (int led = 0; led < NbrLEDs-1; led++)

digitalWrite(ledPins[led], HIGH);
delay(wait);

digitalWrite(ledPins[led + 1], HIGH);
delay(wait);
digitalWrite(ledPins[led], LOW);
delay(wait*2);

}
for (int led = NbrLEDs; led > 0; led--) {
digitalWrite(ledPins[led], HIGH);
delay(wait);
digitalWrite(ledPins[led - 1], HIGH);
delay(wait);
digitalWrite(ledPins[led], LOW);
delay(wait*2);

}

Discussion

This code is similar to the code in Recipe 7.5, except the pins are turned on and off in
a fixed sequence rather than depending on a sensor level. There are two for loops; the
first produces the left-to-right pattern by lighting up LEDs from left to right. This loop
starts with the first (leftmost) LED and steps through adjacent LEDs until it reaches
and illuminates the rightmost LED. The second for loop lights the LEDs from right to
left by starting at the rightmost LED and decrementing (decreasing by one) the LED
that is lit until it gets to the first (rightmost) LED. The delay period is set by the wait
variable and can be chosen to provide the most pleasing appearance.

7.6 Sequencing Multiple LEDs: Making a Chase Sequence (Knight Rider) | 233

1.7 Controlling an LED Matrix Using Multiplexing

Problem

You have a matrix of LEDs and want to minimize the number of Arduino pins needed
to turn LEDs on and off.

Solution

This sketch uses an LED matrix of 64 LEDs with anodes connected in rows and cath-
odes in columns (as in the Futurlec LEDM88R). Dual-color LED displays may be easier
to obtain, and you can drive just one of the colors if that is all you need. Figure 7-6
shows the connections:

/*

matrixMpx sketch

Sequence LEDs starting from first column and row until all LEDS are lit
Multiplexing is used to control 64 LEDs with 16 pins
*

const int columnPins[] = { 2, 3, 4, 5, 6, 7, 8, 9};

const int rowPins[] = { 10,11,12,15,16,17,18,19};
int pixel = 0; // 0 to 63 LEDs in the matrix
int columnlLevel = 0; // pixel value converted into LED column

int rowLevel 0; // pixel value converted into LED row
void setup() {
for (int i =
{
pinMode(columnPins[i], OUTPUT); // make all the LED pins outputs
pinMode(rowPins[i], OUTPUT);
}
}

void loop() {
pixel = pixel + 1;
if(pixel > 63)

0; i< 8; i++)

pixel = 0;
columnLevel = pixel / 8; // map to the number of columns
rowLevel = pixel % 8; // get the fractional value

for (int column = 0; column < 8; column++)

digitalWrite(columnPins[column], LOW); // connect this column to Ground
for(int row = 0; row < 8; row++)

if (columnLevel > column)
digitalWrite(rowPins[row], HICH); // connect all LEDs in row to +5 volts

else if (columnLevel == column && rowLevel >= row)

234 | Chapter7: Visual Qutput

digitalWrite(rowPins[row], HICH);
}

else
digitalWrite(columnPins[column], LOW); // turn off all LEDs in this row

delayMicroseconds(300); // delay gives frame time of 20ms for 64 LEDs
digitalWrite(rowPins[row], LOW); // turn off LED
}

digitalWrite(columnPins[column], HIGH); // disconnect this column
from Ground
}
}

-4
-4

o 5 b o o oy o

Bh
hoh Ph

Analog 5(19) [
Analog 4 (18) [F————y

Analog 3 (17)

Analog 2(16) (3

Analog 1 (15) [S—— I
Analog 0)]

3
-4

4
3

o

a
I_mu-q[|
[=]

-4
4

& |]
k33
)
£ £
£ %]
keI
k3

4

5 5 ok o b3 B
o 5 5 5 o o
o o0 oh Phoh

ot ot b 51 5o oy

keI
3|3

=
-
o
(=]
-

1|[1

wi
-
(=]

o= —C O Do =
T’]
-
3

rRxo]

Figure 7-6. An LED matrix connected to 16 digital pins

LED matrix displays do not have a standard pinout, so you must check
‘“% the data sheet for your display. Wire the rows of anodes and columns

of cathodes as shown in Figure 7-13 or Figure 7-14, but use the LED pin
numbers shown in your data sheet.

7.7 Controlling an LED Matrix Using Multiplexing | 235

Discussion

The resistor’s value must be chosen to ensure that the maximum current through a pin
does not exceed 40 mA. Because the current for up to eight LEDs can flow through
each column pin, the maximum current for each LED must be one-eighth of 40 mA,
or 5 mA. Each LED in a typical small red matrix has a forward voltage of around 1.8
volts. Calculating the resistor that results in 5 mA with a forward voltage of 1.8 volts
gives a value of 680 ohms. Check your data sheet to find the forward voltage of the
matrix you want to use. Each column of the matrix is connected through the series
resistor to a digital pin. When the column pin goes low and a row pin goes high, the
corresponding LED will light. For all LEDs where the column pin is high or its row pin
is low, no current will flow through the LED and it will not light.

The for loop scans through each row and column and turns on sequential LEDs until
all LEDs are lit. The loop starts with the first column and row and increments the row
counter until all LEDs in that row are lit; it then moves to the next column, and so on,
lighting another LED with each pass through the loop until all the LEDs are lit.

You can control the number of lit LEDs in proportion to the value from a sensor (see
Recipe 5.6 for connecting a sensor to the analog port) by making the following changes
to the sketch.

Comment out or remove these three lines from the beginning of the loop:
pixel = pixel + 1;
if(pixel > 63)
pixel = 0;
Replace them with the following lines that read the value of a sensor on pin 0 and map
this to a number of pixels ranging from zero to 63:

int sensorValue = analogRead(0); // read the analog in value
pixel = map(sensorValue, 0, 1023, 0, 63); // map sensor value to pixel
(LED)

You can test this with a variable resistor connected to analog input pin O connected as
shown in Figure 5-7 in Chapter 5. The number of LEDs lit will be proportional to the
value of the sensor.

7.8 Displaying Images on an LED Matrix

Problem

You want to display one or more images on an LED matrix, perhaps creating an ani-
mation effect by quickly alternating multiple images.

236 | Chapter7: Visual Output

Solution

This Solution can use the same wiring as in Recipe 7.7. The sketch creates the effect of
a heart beating by briefly lighting LEDs arranged in the shape of a heart. A small heart
followed by a larger heart is flashed for each heartbeat (the images look like Figure 7-7):

/*
* matrixMpxAnimation sketch
* animates two heart images to show a beating heart

*/

// the heart images are stored as bitmaps - each bit corresponds to an LED
// a 0 indicates the LED is off, 1 is on
byte bigHeart[] = {

Bo1100110,

B11111111,

B11111111,

B11111111,

Bo1111110,

B00111100,

B00011000,

B00000000};

byte smallHeart[] = {
B00000000,
B00000000,
B00010100,
Boo111110,
Boo111110,
B00011100,
B00001000,
B00000000};

const int columnPins[] = { 2, 3, 4, 5, 6, 7, 8, 9};
const int rowPins[] = { 10,11,12,15,16,17,18,19};

void setup() {
for (int i = 0; 1 < 8; i++)

pinMode(rowPins[i], OUTPUT); // make all the LED pins outputs

pinMode(columnPins[i], OUTPUT);

digitalWrite(columnPins[i], HIGH); // disconnect column pins from Ground

}

void loop() {
int pulseDelay = 800 ; // milliseconds to wait between beats
show(smallHeart, 80); // show the small heart image for 100 ms
show(bigHeart, 160); // followed by the big heart for 200ms
delay(pulseDelay); // show nothing between beats

7.8 Displaying Images on an LED Matrix | 237

// routine to show a frame of an image stored in the array pointed to by the
image parameter.

// the frame is repeated for the given duration in milliseconds

void show(byte * image, unsigned long duration)

unsigned long start = millis();
while (start + duration > millis())
has passed

{

for(int row = 0; row < 8; row++)

// begin timing the animation
// loop until the duration period

digitalWrite(rowPins[row], HIGH);
for(int column = 0; column < 8; column++)
{
boolean pixel = bitRead(image[row],column);
if(pixel == 1)
{

// connect row to +5 volts

digitalWrite(columnPins[column], LOW); // connect column to Gnd

delayMicroseconds(300); // a small delay for each LED
digitalWrite(columnPins[column], HICH); // disconnect column from Gnd

digitalWrite(rowPins[row], LOW);
}
}
}

// disconnect LEDs

00000000
90000000
90, o 00
00000000
00000000
o0e. [[00
9000 000
00000000

Small Heart

o [o0 | @
00000000
00000000

00000000
00000000
o [[[00
000 | 000
00000000

Big Heart

Figure 7-7. The two heart images displayed on each beat

Discussion

Columns and rows are multiplexed (switched) similar to Recipe 7.7, but here the value
written to the LED is based on images stored in the bigHeart and smallHeart arrays.
Each elementin the array represents a pixel (a single LED) and each array row represents

238 | Chapter7: Visual Output

a row in the matrix. A row consists of eight bits represented using binary format (as
designated by the capital B at the start of each row). A bit with a value of 1 indicates
that the corresponding LED should be on; a 0 means off. The animation effect is created
by rapidly switching between the arrays.

The loop function waits a short time (800 milliseconds) between beats and then calls
the show function, first with the smallheart array and then followed by the bigHeart
array. The show function steps through each element in all the rows and columns, light-
ing the LED if the corresponding bit is 1. The bitRead function (see Recipe 2.20) is used
to determine the value of each bit.

A short delay of 300 microseconds between each pixel allows the eye time to perceive
the LED. The timing is chosen to allow each image to repeat quickly enough (50 times
per second) so that blinking is not visible.

Here is a variation that changes the rate at which the heart beats, based on the value
from a sensor. You can test this using a variable resistor connected to analog input pin
0, as shown in Recipe 5.6. Use the wiring and code shown earlier, except replace the
loop function with this code:
void loop() {
sensorValue = analogRead(analogInPin); // read the analog in value

int pulseRate = map(sensorValue,0,1023,40,240); // convert to beats / minute
int pulseDelay = (60000 / pulseRate); // milliseconds to wait between beats

show(smallHeart, 80); // show the small heart image for 100 ms
show(bigHeart, 160); // followed by the big heart for 200ms
delay(pulseDelay); // show nothing between beats

}

This version calculates the delay between pulses using the map function (see Rec-
ipe 5.7) to convert the sensor value into beats per minute. The calculation does not
account for the time it takes to display the heart, but you can subtract 240 milliseconds
(80 ms plus 160 ms for the two images) if you want more accurate timing.

See Also

Recipes 12.1 and 12.2 provide more information on how to manage time using the
millis function.

See Recipes 7.12 and 7.13 for information on how to use shift registers to drive LEDs
if you want to reduce the number of Arduino pins needed for driving an LED matrix.

7.9 Controlling a Matrix of LEDs: Charlieplexing

Problem

You have a matrix of LEDs and you want to minimize the number of pins needed to
turn any of them on and off.

7.9 Controlling a Matrix of LEDs: Charlieplexing | 239

Solution

Charlieplexing is a special kind of multiplexing that increases the number of LEDs that
can be driven by a group of pins. This sketch sequences through six LEDs using just
three pins (Figure 7-8 shows the connections):
/*
* Charlieplexing sketch
* 1light six LEDs in sequence that are connected to pins 2, 3, and 4

*/
byte pins[] = {2,3,4}; // the pins that are connected to LEDs

// the next two lines infer number of pins and LEDs from the above array
const int NUMBER_OF PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER OF LEDS = NUMBER_OF PINS * (NUMBER OF PINS-1);

byte pairs[NUMBER OF LEDS/2][2] = { {o,1}, {1,2}, {0,2} }; // maps pins to LEDs

void setup()

// nothing needed here

}

void loop(){
for(int i=0; i < NUMBER_OF LEDS; i++)

lightled(i); // light each LED in turn
delay(1000);

// this function lights the given LED, the first LED is 0
void lightlLed(int led)

// the following four lines convert LED number to pin numbers
int indexA = pairs[led/2][0];

int indexB = pairs[led/2][1];

int pinA = pins[indexA];

int pinB = pins[indexB];

// turn off all pins not connected to the given LED
for(int i=0; i < NUMBER OF PINS; i++)
if(pins[i] != pinA && pins[i] != pinB)
{ // if this pin is not one of our pins
pinMode(pins[i], INPUT); // set the mode to input
digitalWrite(pins[i],LOW); // make sure pull-up is off

// now turn on the pins for the given LED
pinMode(pinA, OUTPUT);

pinMode(pinB, OUTPUT);

if(led % 2 == 0)

240 | Chapter7: Visual Qutput

}

digitalWrite(pinA,LOW);
digitalWrite(pinB,HIGH);

else

{

}
}

digitalWrite(pinB,LOW);
digitalWrite(pinA,HIGH);

o= —"C O o >

RESET
V3

Gnd
Gnd

H

s

H

Wn[:]

'a

S W T aa g,
g—w— .

IE—"NV_I
miQ
o [

1 5 6
X >
3 4

Figure 7-8. Six LEDs driven through three pins using Charlieplexing

Discussion

The term Charlieplexing comes from Charlie Allen (of Microchip Technology, Inc.),
who published the method. The technique is based on the fact that LEDs only turn on
when connected the “right way” around (with the anode more positive than the cath-
ode). Here is the table showing the LED number (see Figure 7-6) that is lit for the valid
combinations of the three pins. L is LOW, H is HIGH, and i is INPUT mode. Setting a pin in
INPUT mode effectively disconnects it from the circuit:

Pins

3

TrrHHIC—N
HeHe T —r— T

—r I I HF B

OO O0OO0OO0ORr O

LEDs

2

O O O0OO0Or oo

OO O0Or OO0OOoOWw

O OFr OO0OO0OOoOH

ORr OO O0OO0OOoOw

P OO0OO0OO0OO0OO0oOOO

7.9 Controlling a Matrix of LEDs: Charlieplexing | 241

You can double the number of LEDs to 12 using just one more pin. The first six LEDs
are connected in the same way as in the preceding example; add the additional six LEDs
so that the connections look like Figure 7-9.

0 L
6g—v\/\l‘J ‘bzs i\\ N JZ\‘*

5 +*

B-w— Ay — L L i e
s[F—WW : W O
B A

141 @)
1@

Figure 7-9. Charlieplexing using four pins to drive 12 LEDs

Modify the preceding sketch by adding the extra pin to the pins array:
byte pins[] = {2,3,4,5}; // the pins that are connected to LEDs

Add the extra entries to the pairs array so that it reads as follows:
byte pairs[NUMBER OF_LEDS/2][2] = { {0,1}, {1,2}, {0,2}, {2,3}, {1,3}, {0,3} };

Everything else can remain the same, so the loop will sequence through all 12 LEDs
because the code determines the number of LEDs from the number of entries in the
pins array.

Because Charlieplexing works by controlling the Arduino pins so that only a single LED
is turned on at a time, it is more complicated to create the impression of lighting mul-
tiple LEDs. But you can light multiple LEDs using a multiplexing technique modified
for Charlieplexing.

This sketch creates a bar graph by lighting a sequence of LEDs based on the value of a
sensor connected to analog pin 0:

byte Pins[] = {2,3,4};

const int NUMBER OF PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER OF LEDS = NUMBER OF PINS * (NUMBER _OF PINS-1);
byte pairs[NUMBER OF LEDS/2][2] = { {o,1}, {1,2}, {0,2} };

int ledStates = 0; //holds states for up to 15 LEDs
int refreshedLed; // the LED that gets refreshed

void setup()

// nothing here
}

242 | Chapter7: Visual Qutput

void loop()
const int analogInPin = 0; // Analog input pin connected to the variable resistor

// here is the code from the bargraph recipe

int sensorValue = analogRead(analogInPin); // read the analog in value

int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER OF LEDS); // map to the
number of LEDs

for (int led = 0; led < NUMBER_OF_LEDS; led++)

if (led < ledLevel) {
setState(led, HIGH); // turn on pins less than the level
}
else {
setState(led, LOW); // turn off pins higher than the level

}

}
ledRefresh();

}

void setState(int led, boolean state)

bitWrite(ledStates,led, state);
}

void ledRefresh()

// refresh a different LED each time this is called.
if(refreshedLed++ > NUMBER OF LEDS) // increment to the next LED
refreshedLed = 0; // repeat from the first LED if all have been refreshed

if(bitRead(ledStates, refreshedLed) == HIGH)
lightlLed(refreshedLed);
}

// this function is identical to the sketch above
// it lights the given LED, the first LED is 0
void lightlLed(int led)

// the following four lines convert LED number to pin numbers
int indexA = pairs[led/2][0];

int indexB = pairs[led/2][1];

int pinA = pins[indexA];

int pinB = pins[indexB];

// turn off all pins not connected to the given LED
for(int i=0; i < NUMBER_OF PINS; i++)
if(pins[i] != pinA 8& pins[i] != pinB)
{ // if this pin is not one of our pins
pinMode(pins[i], INPUT); // set the mode to input
digitalWrite(pins[i],LOW); // make sure pull-up is off

// now turn on the pins for the given LED
pinMode(pinA, OUTPUT);

7.9 Controlling a Matrix of LEDs: Charlieplexing | 243

pinMode(pinB, OUTPUT);
if(led % 2 == 0)

digitalWrite(pinA,LOW);
digitalWrite(pinB,HIGH);
}

else

{
digitalWrite(pinB,LOW);
digitalWrite(pinA,HIGH);
}
}

This sketch uses the value of the bits in the variable ledStates to represent the state of
the LEDs (0 if off, 1 if on). The refresh function checks each bit and lights the LEDs
for each bit that is set to 1. The refresh function must be called quickly and repeatedly,
or the LEDs will appear to blink.

Adding delays into your code can interfere with the “persistence of vi-
) sion” effect that creates the illusion that hides the flashing of the LEDs.

You can use an interrupt to service the refresh function in the background (without
needing to explicitly call the function in loop). Timer interrupts are covered in Chap-
ter 18, but here is a preview of one approach for using an interrupt to service your LED
refreshes. This uses a third-party library called FrequencyTimer2 (available from the
Arduino Playground) to create the interrupt:

#include <FrequencyTimer2.h>

byte pins[] = {2)3)415};
const int NUMBER_OF PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER OF LEDS = NUMBER_ OF PINS * (NUMBER OF PINS-1);

byte pairs[NUMBER OF LEDS/2][2] = { {o,1}, {1,2}, {0,2} };

int ledStates = 0; //holds states for up to 15 LEDs
int refreshedLed; // the LED that gets refreshed

#include <FrequencyTimer2.h> // include this library to handle the refresh

byte pins[] = {2,3,4};
const int NUMBER_OF PINS = sizeof(pins)/ sizeof(pins[0]);
const int NUMBER_OF_LEDS = NUMBER_OF_PINS * (NUMBER_OF PINS-1);

byte pairs[NUMBER_OF LEDS/2][2] = { {o,1}, {1,2}, {0,2} };

int ledStates = 0; //holds states for up to 15 LEDs
int refreshedLed; // the LED that gets refreshed

244 | Chapter7: Visual Qutput

void setup()
{

FrequencyTimer2::setPeriod(20000/ NUMBER_OF LEDS); // set the period

// the next line tells FrequencyTimer2 the function to call (ledRefresh)
FrequencyTimer2: :setOnOverflow(ledRefresh);

FrequencyTimer2: :enable();

void loop()
{
const int analogInPin = 0; // Analog input pin connected to the variable resistor

// here is the code from the bargraph recipe

int sensorValue = analogRead(analogInPin); // read the analog in value

int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER OF LEDS); // map to the
number of LEDs

for (int led = 0; led < NUMBER OF LEDS; led++)

if (led < ledLevel) {
setState(led, HIGH); // turn on pins less than the level
}

else {
setState(led, LOW); // turn off pins higher than the level
}

// the LED is no longer refreshed in loop, it's handled by FrequencyTimer2
}

// the remaining code is the same as the previous example

The FrequencyTimer?2 library has the period set to 1,666 microseconds (20 ms divided
by 12, the number of LEDs). The FrequencyTimer2setOnOverflow method gets the func-
tion to call (ledRefresh) each time the timer “triggers.”

See Also

Chapter 18 provides more information on timer interrupts.

7.10 Driving a 7-Segment LED Display

Problem

You want to display numerals using a 7-segment numeric display.

Solution

The following sketch displays numerals from zero to nine on a single-digit, 7-segment
display. Figure 7-10 shows the connections. The output is produced by turning on
combinations of segments that represent the numerals:

/*

* SevenSegment sketch

7.10 Driving a 7-Segment LED Display | 245

* Shows numerals ranging from O through 9 on a single-digit display
* This example counts seconds from 0 to 9

*/

// bits representing segments A through G (and decimal point) for numerals 0-9

const byte numeral[10] = {
//ABCDEFG /dp
B11111100, // 0
B01100000, // 1
B11011010, // 2
B11110010, // 3
Bo1100110, // 4
B10110110, // 5
Bo0111110, // 6
B11100000, // 7
B11111110, // 8
B11100110, // 9

I

// pins for decimal point and each segment
// dp,G,F,E,D,C,B,A
const int segmentPins[8] = { 5,9,8,7,6,4,3,2};

void setup()

for(int i=0; i < 8; i++)
{
pinMode(segmentPins[i], OUTPUT); // set segment and DP pins to output

void loop()
{

for(int i=0; i <= 10; i++)
{
showDigit(i);
delay(1000);

// the last value if i is 10 and this will turn the display off
delay(2000); // pause two seconds with the display off

// Displays a number from 0 through 9 on a 7-segment display
// any value not within the range of 0-9 turns the display off
void showDigit(int number)

boolean isBitSet;
for(int segment = 1; segment < 8; segment++)

if(number < 0 || number > 9){
isBitSet = 0; // turn off all segments

}

else{

246 | Chapter7: Visual Output

// isBitSet will be true if given bit is 1
isBitSet = bitRead(numeral[number], segment);

isBitSet = ! isBitSet; // remove this line if common cathode display
digitalWrite(segmentPins[segment], isBitSet);
}
}

RESETC
w3

st—l Common
endJ
and(] 5

vin[Q

U,_.ﬂ_

130 9
120 -

e : F B1{6
1003

9
3= vw

o= —"C O o >

Iile
Ry L

See text for
resistor values

Figure 7-10. Connecting a 7-segment display

Discussion

The segments to be lit for each numeral are held in the array called numeral. There is
one byte per numeral where each bit in the byte represents one of seven segments (or
the decimal point).

The array called segmentPins holds the pins associated with each segment. The
showDigit function checks that the number ranges from zero to 9, and if valid, looks at
each segment bit and turns on the segment if the bit is set (equal to 1). See Rec-
ipe 3.12 for more on the bitRead function.

7.10 Driving a 7-Segment LED Display | 247

As mentioned in Recipe 7.4, a pin is set HICH when turning on a segment on a common
cathode display, and it’s set LOW when turning on a segment on a common anode
display. The code here is for a common anode display, so it inverts the value (sets O to
1 and 1 to 0) as follows:

isBitSet = ! isBitSet; // remove this line if common cathode display

The ! is the negation operator—see Recipe 2.20. If your display is a common cathode
display (all the cathodes are connected together; see the data sheet if you are not sure),
you can remove that line.

7.11 Driving Multidigit, 7-Segment LED Displays: Multiplexing

Problem

You want to display numbers using a 7-segment display that shows two or more digits.

Solution

Multidigit, 7-segment displays usually use multiplexing. In earlier recipes, multiplexed
rows and columns of LEDs were connected together to form an array; here, corre-
sponding segments from each digit are connected together (see Figure 7-11):

/*
* SevenSegmentMpx sketch

* Shows numbers ranging from 0 through 9999 on a four-digit display

* This example displays the value of a sensor connected to an analog input

*/

// bits representing segments A through G (and decimal point) for numerals 0-9

const int numeral[10] = {
//ABCDEFG /dp
B11111100, // O
B01100000, // 1
B11011010, // 2
B11110010, // 3
Boi100110, // 4
B10110110, // 5
Bo0o111110, // 6
B11100000, // 7
B11111110, // 8
B11100110, // 9

b
// pins for decimal point and each segment
// dp,G,F,E,D,C,B,A
const int segmentPins[] = { 4,7,8,6,5,3,2,9};
const int nbrDigits= 4; // the number of digits in the LED display

//dig 1 2 3 4
const int digitPins[nbrDigits] = { 10,11,12,13};

248 | Chapter7: Visual Qutput

void setup()

for(int i=0; i < 8; i++)
pinMode(segmentPins[i], OUTPUT); // set segment and DP pins to output

for(int i=0; i < nbrDigits; i++)
pinMode(digitPins[i], OUTPUT);

void loop()
{

int value = analogRead(0);
showNumber (value);

}

void showNumber(int number)

if(number == 0)
showDigit(0, nbrDigits-1) ; // display 0 in the rightmost digit
else

// display the value corresponding to each digit
// leftmost digit is 0, rightmost is one less than the number of places
for(int digit = nbrDigits-1; digit >= 0; digit--)

if(number > 0)

showDigit(number % 10, digit) ;
number = number / 10;
}
}
}
}

// Displays given number on a 7-segment display at the given digit position
void showDigit(int number, int digit)

digitalWrite(digitPins[digit], HIGH);
for(int segment = 1; segment < 8; segment++)

boolean isBitSet = bitRead(numeral[number], segment);

// isBitSet will be true if given bit is 1

isBitSet = ! isBitSet; // remove this line if common cathode display
digitalWrite(segmentPins[segment], isBitSet);

}
delay(5);
digitalWrite(digitPins[digit], LOW);

7.11 Driving Multidigit, 7-Segment LED Displays: Multiplexing | 249

Pot 3

O
&
O == —|Cc9oO o>

resistor values

Figure 7-11. Connecting a multidigit, 7-segment display (LTC-2623)

Discussion

This sketch has a showDigit function similar to that discussed in Recipe 7.10. Here the
function is given the numeral and the digit place. The logic to light the segments to
correspond to the numeral is the same, but in addition, the code sets the pin corre-
sponding to the digit place HIGH, so only that digit will be written (see the earlier mul-
tiplexing explanations).

7.12 Driving Multidigit, 7-Segment LED Displays Using
MAX7221 Shift Registers

Problem

You want to control multiple 7-segment displays, but you want to minimize the number
of required Arduino pins.

Solution

This Solution uses the popular MAX7221 LED driver chip to control four-digit com-
mon cathode displays, such as the Lite-On LTC-4727]JR (Digi-Key 160-1551-5-ND).
The MAX7221 provides a simpler solution than Recipe 7.11, because it handles mul-
tiplexing and digit decoding in hardware.

This sketch will display a number between zero and 9,999 (Figure 7-12 shows the
connections):

250 | Chapter7: Visual Qutput

/*
Max7221_digits
*/
#include <SPI.h> // Arduino SPI library introduced in Arduino version 0019

const int slaveSelect = 10; //pin used to enable the active slave

2; // change these to match the number of digits

const int numberOfDigits
wired up
const int maxCount = 99;

int number = 0;
void setup()

Serial.begin(9600);
SPI.begin(); // initialize SPI
pinMode(slaveSelect, OUTPUT);
digitalWrite(slaveSelect,LOW); //select slave
// prepare the 7221 to display 7-segment data - see data sheet
sendCommand(12,1); // normal mode (default is shutdown mode);
sendCommand(15,0); // Display test off
sendCommand(10,8); // set medium intensity (range is 0-15)
sendCommand(11,number0fDigits); // 7221 digit scan limit command
sendCommand(9,255); // decode command, use standard 7-segment digits
digitalWrite(slaveSelect,HIGH); //deselect slave

}

void loop()
// display a number from the serial port terminated by the end of line

character
if(Serial.available())

{

char ch = Serial.read();

if(ch == "\n")

{
displayNumber (number);
number = 0;

}

else

number = (number * 10) + ch - '0'; // see Chapter 4 for details
}
}

// function to display up to four digits on a 7-segment display
void displayNumber(int number)

for(int i = 0; i < numberOfDigits; i++)

{
byte character = number % 10; // get the value of the rightmost decade
if(number == 0 & i > 0)

character = oxf; // the 7221 will blank the segments when receiving value

// send digit number as command, first digit is command 1

7.12 Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift Registers | 251

sendCommand(numberOfDigits-i, character);
number = number / 10;

}
}

void sendCommand(int command, int value)
{
digitalWrite(slaveSelect,LOW); //chip select is active low
//2-byte data transfer to the 7221
SPI.transfer(command);
SPI.transfer(value);
digitalWrite(slaveSelect,HIGH); //release chip, signal end transfer

{1 fl |"F | I,' I|"F | I,' i |
3 i
| ﬁ ﬁ,

| | | | | |]

b
1[9)[8][22][1a][1e][z0]23]TIASI 7] 2 A1) [e 713][]][8]

—
—
—

)

'%3

RESET w'b:'_T_'li*'”
EE uF u
W
wE [4][9
RGnd T Ee> 5 8= @U oW a0~ Nomos o~
(=] (=] o o
DG‘:’:E Vo 22 oS8 8RS EREEEE
(%)
U T3=E g
AREF See =
| -sr-mE =232 MAX7221
13 A=E=EQq
1
N 1[S I-?——l
0 5
9
8

Figure 7-12. MAX7221 driving a multidigit common cathode 7-segment display

Solution

This recipe uses Arduino SPI communication to talk to the MAX7221 chip. Chap-
ter 13 covers SPI in more detail, and Recipe 13.8 explains the SPI-specific code used.

This sketch displays a number if up to four digits are received on the serial port—see
Chapter 4 for an explanation of the serial code in loop. The displayNumber function
extracts the value of each digit, starting from the rightmost digit, to the MAX7221 using
the sendCommand function that sends the values to the MAX7221.

The wiring shown uses a four-digit, 7-segment display, but you can use single- or
dual-digit displays for up to eight digits. When combining multiple displays, each cor-
responding segment pin should be connected together. (Recipe 13.8 shows the con-
nections for a common dual-digit display.)

252 | Chapter7: Visual Qutput

W8

- The MAX72xx chips are designed for common cathode displays. The
"‘:‘ anode of each segment is available on a separate pin, and the cathodes

s of all the segments for each digit are connected together.

7.13 Controlling an Array of LEDs by Using MAX72xx Shift
Registers

Problem

You have an 8x8 array of LEDs to control, and you want to minimize the number of
required Arduino pins.

Solution

As in Recipe 7.12, you can use a shift register to reduce the number of pins needed to
control an LED matrix. This solution uses the popular MAX7219 or MAX7221 LED
driver chip to provide this capability. The sketch uses the matrix library distributed
with Arduino, but it uses different Arduino pins than the Arduino example sketch. To
run the following code, connect your Arduino, matrix, and MAX72xx as shown in
Figure 7-13.

EEIIEIIEIEEEIEI

E

(24][21][18][15][1 [4][7][10]

[IpshZI eI 0] s e

[
==
=

10
RESET uf
i

~J

4

=z
|
Gnd E:r
ot e
+5V E

Gnd

Iset [3]
Seg Dp |E|
SegA E
SegB E
SegC E

Segk
SegF
SegG
Dig 0
Dig1
Dig 2
Dig3
Dig 6
Dig7

D

MAX7219/MAX7221

o}
In

e
L—{12] Loadlcs)

Clk

oO=—cCc o>m>
~
@]

£ D
[23] DOut

e

Figure 7-13. MAX72xx driving an 8x8 LED array

7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers | 253

This sketch is based on the Arduino hello_matrix library by Nicholas Zambetti, with
only the pin number changed to be consistent with the wiring used elsewhere in this
chapter:

#include <Sprite.h>
#include <Matrix.h>

// Hello Matrix
// by Nicholas Zambetti <http://www.zambetti.com>

// Demonstrates the use of the Matrix library
// For MAX7219 LED Matrix Controllers
// Blinks welcoming face on screen

const int loadPin 2;
const int clockPin = 3;
const int dataPin = 4;

Matrix myMatrix = Matrix(dataPin, clockPin, loadPin); // create a new Matrix
instance

void setup()

}

void loop()

{ myMatrix.clear(); // clear display
delay(1000);

// turn some pixels on

myMatrix.write(1, 5, HIGH);
myMatrix.write(2, 2, HIGH);
myMatrix.write(2, 6, HIGH);
myMatrix.write(3, 6, HIGH);
myMatrix.write(4, 6, HIGH);
myMatrix.write(5, 2, HIGH);
myMatrix.write(5, 6, HIGH);
myMatrix.write(6, 5, HIGH);

delay(1000);
}

Discussion

A matrix is created by passing pin numbers for the data, load, and clock pins. loop uses
the write method to turn pixels on; the clar method turns the pixels off. write has three
parameters: the first two identify the column and row (x and y) of an LED and the third
parameter (HIGH or LOW) turns the LED on or off.

254 | Chapter7: Visual Output

The pin numbers shown here are for the green LEDs in the dual-color 8x8 matrix
available from these suppliers:

SparkFun: COM-00681
NKC Electronics Item #: COM-0006

The resistor (marked R1 in Figure 7-13) is used to control the maximum current that
will be used to drive an LED. The MAX72xx data sheet has a table that shows a range
of values (see Table 7-3).

Table 7-3. Table of resistor values (from MAX72xx data sheet)

LED forward voltage

Current 1.5V 2.0V 2.5V 3.0V 3.5V

40 mA 12kQ 12kQ 11kQ 10kQ 10kQ
30mA 18kQ 17kQ 16 kQ 15kQ 14kQ
20mA 30kQ 28kQ 26 kQ 24KkQ 22kQ
10mA 68 kQ 64kQ 60 kQ 56 kQ 51kQ

The green LED in the LED matrix shown in Figure 7-13 has a forward voltage of 2.0
volts and a forward current of 20 mA. Table 7-3 indicates 28K ohms, but to add a little
safety margin, a resistor of 30K or 33K would be a suitable choice. The capacitors
(0.1 uf and 10 uf) are required to prevent noise spikes from being generated when the
LEDs are switched on and off—see “Using Capacitors for Decoupling” on page 593
in Appendix C if you are not familiar with connecting decoupling capacitors.

See Also
MAX72xx data sheet: http://pdfserv.maxim-ic.com/en/dss/MAX7219-MAX7221.pdf

7.14 Increasing the Number of Analog Outputs Using PWM
Extender Chips (TLC5940)

Problem

You want to have individual control of the intensity of more LEDs than Arduino can
support (6 on a standard board and 12 on the Mega).

Solution

The TLC5940 chip drives up to 16 LEDs using only five data pins. Figure 7-14 shows
the connections. This sketch is based on the excellent T1c5940 library written by Alex
Leone (acleone@gmail.com). You can download the library from http://code.google
.com/p/tlc5940arduinol/:

7.14 Increasing the Number of Analog Outputs Using PWM Extender Chips (TLC5940) | 255

http://pdfserv.maxim-ic.com/en/ds/MAX7219-MAX7221.pdf
mailto:acleone@gmail.com
http://code.google.com/p/tlc5940arduino/
http://code.google.com/p/tlc5940arduino/

/*

* TLC sketch

* Create a Knight Rider-like effect on LEDs plugged into all the TLC outputs
* this version assumes one TLC with 16 LEDs

*/
#include "T1c5940.h"
void setup()

Tlc.init(); // initialize the TLC library
}

void loop()
{

int direction = 1;
int intensity = 4095; // an intensity from 0 to 4095, full brightness is 4095
int dim = intensity / 4; // 1/4 the value dims the LED
for (int channel = 0; channel < 16; channel += direction) {
// the following TLC commands set values to be written by the update method
Tlc.clear(); // turn off all LEDs
if (channel == 0) {
direction = 1;
}
else {
Tlc.set(channel - 1, dim); // set intensity for prev LED
}
Tlc.set(channel, intensity); // full intensity on this LED
if (channel < 16){
Tlc.set(channel + 1, dim); // set the next LED to dim

else {
direction = -1;
}
Tlc.update(); // this method sends data to the TLC chips to change the LEDs
delay(75);
}
}
Discussion

This sketch loops through each channel (LED), setting the previous LED to dim, the
current channel to full intensity, and the next channel to dim. The LEDs are controlled
through a few core methods.

The Tlc.init method initializes T1lc functions prior to any other function.

256 | Chapter7: Visual Qutput

o
—&: RESET
! Esvs
Qut0 El '“E.'d
n
Vprg [27] Eird
Sin [26 " A
Sclk [25 AREF R
—y Nat[24 g%"ﬂ D
~Blank [23] I 121 U
v Gnd (22 10
© 9 |
g Vee | : ‘—I 3
Irer[20} 2k N
bc Pw Qr 0
GScIk 5
Sout ;
2
Xen arTx
ouns@.l cRxo
- .
"

Figure 7-14. Sixteen LEDs driven using external PWM

The following functions only take effect after calling the update() method:

Tlc.clear
Turns off all channels

Tlc.set

Sets the intensity for the given channel to a given value
Tlc.setAll

Sets all channels to a given value

Tlc.update
Sends the changes from any of the preceding commands to the TLC chip

More functions are available in the library; see the link to the reference at the end of
this recipe.

The 2K resistor between TLC pin 20 (Iref) and Gnd will let around 20 mA through each
LED. You can calculate the resistor value R for a different current (in milliamperes)
using the formula R = 40,000 / mA. R is 1 ohm, and the calculation does not depend
on the LED driving voltage.

If you want the LEDs to turn off when the Arduino is reset, put a pull-up resistor (10K)
between +5V and BLANK (pin 23 of the TLC and Arduino pin 10).

7.14 Increasing the Number of Analog Outputs Using PWM Extender Chips (TLC5940) | 257

Here is a variation that uses a sensor value to set the maximum LED intensity. You can
test this using a variable resistor connected as shown in Figure 7-11 or Figure 7-15:

#include "T1c5940.h"

const int sensorPin = 0; // connect sensor to analog input 0
void setup()

{

Tlc.init(); // initialize the TLC library

void loop()
{

int direction = 1;
int sensorValue = analogRead(0); // get the sensor value
int intensity = map(sensorValue, 0,1023, 0, 4095); // map to TLC range
int dim = intensity / 4; // 1/4 the value dims the LED
for (int channel = 0; channel < NUM_TLCS * 16; channel += direction) {
// the following TLC commands set values to be written by the update method
Tlc.clear(); // turn off all LEDs
if (channel == 0) {
direction = 1;
}

else {

Tlc.set(channel - 1, dim); // set intensity for prev LED
}
Tlc.set(channel, intensity); // full intensity on this LED
if (channel != NUM_TLCS * 16 - 1) {

Tlc.set(channel + 1, dim); // set the next LED to dim

else {
direction = -1;
}
Tlc.update(); // this method sends data to the TLC chips to change the LEDs
delay(75);
}

}

This version also allows for multiple TLC chips if you want to drive more than 16 LEDs.
You do this by “daisy-chaining” the TLC chips—connect the Sout (pin 17) of the first
TLC to the Sin (pin 26) of the next. The Sin (pin 26) of the first TLC chip is connected
to Arduino pin 11, as shown in Figure 7-14.

The following pins should be connected together when daisy-chaining TLC chips:

* Arduino pin 9 to XLAT (pin 24) of each TLC
* Arduino pin 10 to BLANK (pin 23) of each TLC
* Arduino pin 13 to SCLK (pin 25) of each TLC

Each TLC needs its own resistor between Iref (pin 20) and Gnd.

258 | Chapter7: Visual Qutput

You must change the value of the NUM_TLCS constant defined in the Tlc5940 library to
match the number of chips you have wired.

See Also

Go to http://code.google.com/p/tlc5940arduino/ to download this library and access its
documentation.

7.15 Using an Analog Panel Meter As a Display

Problem

You would like to control the pointer of an analog panel meter from your sketch. Fluc-
tuating readings are easier to interpret on an analog meter, and analog meters add a
cool retro look to a project.

Solution

Connect the meter through a series resistor (5K ohms for the typical 1 mA meter) and
connect to an analog (PWM) output (see Figure 7-15).

VWA
Series Resistor
See Text
evsecsuolosseccss eeten
23777 pemaL mE
Ardui ~
rduino S
oo +]] .
lee

- (-H\"n |/\ E%égg‘f— c-—A!iArl:?im
N 0OMOg0 Qooaoq

> 10K Pot

Figure 7-15. Driving an analog meter

7.15 Using an Analog Panel Meter As a Display | 259

http://code.google.com/p/tlc5940arduino/

The pointer movement corresponds to the position of a pot (variable resistor):

/*
* AnalogMeter sketch

* Drives an analog meter through an Arduino PWM pin

* The meter level is controlled by a variable resistor on an analog input pin

*/

const int analogInPin = 0; // Analog input pin connected to the variable resistor
const int analogMeterPin = 9; // Analog output pin connecting to the meter

int sensorValue = 0; // value read from the pot
int outputValue = 0; // value output to the PWM (analog out)

void setup()

// nothing in setup

void loop()
{

sensorValue = analogRead(analogInPin); // read the analog in value
outputValue = map(sensorValue, 0, 1023, 0, 255); // map to the range of the
analog out
analoghrite(analogMeterPin, outputValue); // write the analog out value
}
Discussion

In this variation on Recipe 7.2, the Arduino analogWirite output drives a panel meter.
Panel meters are usually much more sensitive than LEDs; a resistor must be connected
between the Arduino output and the meter to drop the current to the level for the meter.

The value of the series resistor depends on the sensitivity of the meter; 5K ohms give
full-scale deflection with a 1 mA meter. You can use 4.7K resistors, as they are easier
to obtain than 5K, although you will probably need to reduce the maximum value given
to analogWrite to 240 or so. Here is how you can change the range in the map function
if you use a 4.7K ohm resistor with a 1 mA meter:

outputValue = map(sensorValue, 0, 1023, 0, 240); // map to meter's range

If your meter has a different sensitivity than 1 mA, you will need to use a different value
series resistor. The resistor value in ohms is: Resistor = 5,000 / mA

So, a 500 microamp meter (0.5 mA) is 5,000 / 0.5, which is 10,000 (10K) ohms.

Some surplus meters already have an internal series resistor—you may need to experi-
ment to determine the correct value of the resistor, but be careful not to apply too much
voltage to your meter.

See Also
Recipe 7.2

260 | Chapter7: Visual Qutput

CHAPTER 8
Physical Output

8.0 Introduction

You can make things move by controlling motors with Arduino. Different types of
motors suit different applications, and this chapter shows how Arduino can drive many
different kinds of motors.

Motion Control Using Servos

Servos enable you to accurately control physical movement because they generally
move to a position instead of continuously rotating. They are ideal for making some-
thing rotate over a range of 0 to 180 degrees. Servos are easy to connect and control
because the motor driver is built into the servo.

Servos contain a small motor connected through gears to an output shaft. The output
shaft drives a servo arm and is also connected to a potentiometer to provide position
feedback to an internal control circuit (see Figure 8-1).

You can get continuous rotation servos that have the positional feedback disconnected
so that you can instruct the servo to rotate continuously clockwise and counterclock-
wise with some control over the speed. These function a little like the brushed motors
covered in Recipe 8.3, except that continuous rotation servos use the servo library code
instead of analoghrite.

Servos respond to changes in the duration of a pulse. A short pulse of 1 ms or less will
cause the servo to rotate to one extreme; a pulse duration of 2 ms or so will rotate the
servo to the other extreme (see Figure 8-2). Pulses ranging between these values will
rotate the servo to a position proportional to the pulse width. There is no standard for
the exact relationship between pulses and position, and you may need to tinker with
the commands in your sketch to adjust for the range of your servos.

261

T |”|||||H_|_||_||||||||"|I||||

T? Arduino
Y, Pin

Motor

[Hpidge |
| | - | ’

Figure 8-1. Elements inside a hobby servo

Although the duration of the pulse is modulated (controlled), servos
= require pulses that are different from the Pulse Width Modulation
(PWM) output from analoghrite. You can damage a hobby servo by

connecting it to the output from analoghirite—use the Servo library
instead.

Solenoids and Relays

Although most motors produce rotary motion, a solenoid produces linear movement
when powered. A solenoid has a metallic core that is moved by a magnetic field that is
created when current is passed through a coil. A mechanical relay is a type of solenoid
that connects or disconnects electrical contacts (it’s a solenoid operating a switch).
Relays are controlled just like solenoids. Relays and solenoids, like most motors, require
more current than an Arduino pin can safely provide, and the recipes in this chapter
show how you can use a transistor or external circuit to drive these devices.

Brushed and Brushless Motors

Most low-cost direct current (DC) motors are simple devices with two leads connected
to brushes (contacts) that control the magnetic field of the coils that drives a metallic
core (armature). The direction of rotation can be reversed by reversing the polarity of
the voltage on the contacts. DC motors are available in many different sizes, but even
the smallest (such as vibration motors used in cell phones) require a transistor or other
external control to provide adequate current. The recipes that follow show how to
control motors using a transistor or an external control circuit called an H-Bridge.

262 | Chapter8: Physical Output

Tms 1.5ms 2ms

Typically
20ms
between
pulses

0 Degrees 90 Degrees 180 Degrees
O N W O
& * &

Figure 8-2. Relationship between the pulse width and the servo angle; the servo output arm moves
proportionally as the pulse width increases from 1 ms to 2 ms

The primary characteristic in selecting a motor is torque. Torque determines how much
work the motor can do. Typically, higher torque motors are larger and heavier and
draw more current than lower torque motors.

Brushless motors usually are more powerful and efficient for a given size than brushed
motors, but they require more complicated electronic control. Where the performance
benefit of a brushless motor is desired, components called electronics speed control-
lers intended for hobby radio control use can be easily controlled by Arduino because
they are controlled much like a servo motor.

Stepper Motors

Steppers are motors that rotate a specific number of degrees in response to control
pulses. The number of degrees in each step is motor-dependent, ranging from one or
two degrees per step to 30 degrees or more.

Two types of steppers are commonly used with Arduino: bipolar (typically with four
leads attached to two coils) and unipolar (five or six leads attached to two coils). The
additional wires in a unipolar stepper are internally connected to the center of the coils
(in the five-lead version, each coil has a center tap and both center taps are connected
together). The recipes covering bipolar and unipolar steppers have diagrams illustrating
these connections.

8.0 Introduction | 263

Troubleshooting Sidebar

The most common cause of problems when connecting devices that require external
power is neglecting to connect all the grounds together. Your Arduino ground must be
connected to the external power supply ground and the grounds of external devices
being powered.

8.1 Controlling the Position of a Servo

Problem

You want to control the position of a servo using an angle calculated in your sketch.
For example, you want a sensor on a robot to swing through an arc or move to a position
you select.

Solution

Use the Servo library distributed with Arduino. Connect the servo power and ground
to a suitable power supply (a single hobby servo can usually be powered from the
Arduino 5V line). Recent versions of the library enable you to connect the servo signal
leads to any Arduino digital pin.

Here is the example Sweep sketch distributed with Arduino; Figure 8-3 shows the
connections:

#include <Servo.h>

Servo myservo; // create servo object to control a servo
int angle = 0; // variable to store the servo position
void setup()

myservo.attach(9); // attaches the servo on pin 10 to the servo object

void loop()

for(angle = 0; angle < 180; angle += 1) // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(angle); // tell servo to go to position in variable 'angle'
delay(20); // waits 20ms between servo commands

for(angle = 180; angle >= 1; angle -= 1) // goes from 180 degrees to 0 degrees

myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(20); // waits 20ms between servo commands

264 | Chapter8: Physical Output

/ Signal (White)

00000000 00000000

oM OO e oS — o

£S5 DIGITAL ==

+5V(Red)

(Black)

Arduino s o
E‘ +
- L
N N CIliI]D 000000 0O

Servo

Figure 8-3. Connecting a servo for testing with the example Sweep sketch

Discussion

This example sweeps the servo between 0 and 180 degrees. You may need to tell the
library to adjust the minimum and maximum positions so that you get the range of
movement you want. Calling Servo.attach with optional arguments for minimum and
maximum positions will adjust the movement:

myservo.attach(9,1000,2000); // use pin 9, set min to 1000us, max to 2000us

Because typical servos respond to pulses measured in microseconds and not degrees,
the arguments following the pin number inform the Servo library how many micro-
seconds to use when O degrees or 180 degrees are requested. Not all servos will move
over a full 180-degree range, so you may need to experiment with yours to get the range
you want.

The parameters for servo.attach(pin, min, max) are the following:

pin
The pin number that the servo is attached to (must be 9 or 10)

min (optional)
The pulse width, in microseconds, corresponding to the minimum (0-degree) angle
on the servo (defaults to 544)

max (optional)
The pulse width, in microseconds, corresponding to the maximum (180-degree)
angle on the servo (defaults to 2,400)

Power requirements vary depending on the servo and how much torque is needed to
rotate the shaft.

8.1 Controlling the Position of a Servo | 265

You may need an external source of 5 or 6 volts when connecting mul-
tiple servos. Four AA cells work well if you want to use battery power.
s Remember that you must connect the ground of the external power
source to Arduino ground.

8.2 Controlling One or Two Servos with a Potentiometer
or Sensor

Problem

You want to control the rotational direction and speed of one or two servos with a
potentiometer. For example, you want to control the pan and tilt of a camera or sensor
connected to the servos. This recipe can work with any variable voltage from a sensor
that can be read from an analog input.

Solution

The same library can be used as in Recipe 8.1, with the addition of code to read the
voltage on a potentiometer. This value is scaled so that the position of the pot (from
0 to 1023) is mapped to a value between 0 and 180 degrees. The only difference in the
wiring is the addition of the potentiometer; see Figure 8-4:

#include <Servo.h>
Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin

void setup()
{

myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop()

val = analogRead(potpin); // reads the value of the potentiometer
val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo
myservo.write(val); // sets position to the scaled value
delay(15); // waits for the servo to get there

266 | Chapter8: Physical Output

/ Signal (White)

00000000 DDD[IDDD +5V(Red)

u.QmN-—Qc\ O e —
£S5 DIGITAL ==
(Black)
Arduino S
[=X+)
E‘ #
B =tc ANALOG
-
4 \f) EEEEEE o rimain
U oooogo Qooaa 5
Servo
dk
5 Pot

Figure 8-4. Controlling a servo with a potentiometer

Discussion

Anything that can be read from analogRead (see Chapter 5 and Chapter 6) can be used—
for example, the gyro and accelerometer recipes in Chapter 6 can be used so that the
angle of the servo is controlled by the yaw of the gyro or angle of the accelerometer.

8.3 Controlling the Speed of Continuous Rotation Servos

Problem

You want to control the rotational direction and speed of servos modified for contin-
uous rotation. For example, you are using two continuous rotation servos to power a
robot and you want the speed and direction to be controlled by your sketch.

Solution

Continuous rotation servos are a form of gear reduced motor with forward and back-
ward speed adjustment. Control of continuous rotation servos is similar to normal
servos. The servo rotates in one direction as the angle is increased from 90 degrees; it
rotates in the other direction when the angle is decreased from 90 degrees. The actual
direction forward or backward depends on how you have the servos attached. Fig-
ure 8-5 shows the connections for controlling two servos.

This example sweeps the servos from 90 to 180 degrees, so if the servos were connected
to wheels, the vehicle would move forward at a slowly increasing pace and then slow

8.3 Controlling the Speed of Continuous Rotation Servos | 267

/Signal (White)

Servo +5V(Red)
atsesscepesseeses Comector—T— Gnd (Black)

o}

g8 Deml | == e Ml

Arduino s
F connect to O O
o g, Arduino r\ |

External Power

0 Source W

[re]
B o Bezee M |
AN mmrfo 00ooog g o ©
| mal |
| Power Source | +Svfro Servos
! i v from

Arduino

Figure 8-5. Controlling two servos

down to a stop. Because the servo control code is in loop, this will continue for as long
as there is power:

#include <Servo.h>

Servo myservolLeft; // create servo object to control a servo
Servo myservoRight; // create servo object to control a servo

int pos = 0; // variable to store the servo position
void setup()
myservolLeft.attach(9); // attaches left servo on pin 9 to servo object
myservoRight.attach(10); // attaches right servo on pin 10 to servo object
void loop()
for(angle = 90; angle < 180; angle += 1) // goes from 90 to 180 degrees
// in steps of 1 degree
// 90 degrees is stopped
myservoLeft.write(angle); // rotate servo at speed given by 'angle’
myservoRight.write(180-angle); // go in the opposite direction
delay(20); // waits 20ms between servo commands

for(angle = 180; angle >= 90; angle -= 1) // goes from 180 to 90 degrees

myservoLeft.write(angle); // rotate at a speed given by 'angle'
myservoRight.write(180-angle); // other servo goes in opposite direction

268 | Chapter8: Physical Output

Discussion

You can use similar code for continuous rotation and normal servos, but be aware that
continuous rotation servos may not stop rotating when writing exactly 90 degrees.
Some servos have a small potentiometer you can trim to adjust for this, or you can add
or subtract a few degrees to stop the servo. For example, if the left servo stops rotating
at 92 degrees, you can change the lines that write to the servos as follows:

myservolLeft.write(angle+TRIM); // declare int TRIM=2; at beginning of sketch

8.4 Controlling Servos from the Serial Port

Problem

You want to provide commands to control servos from the serial port. Perhaps you
want to control servos from a program running on your computer.

Solution

You can use software to control the servos. This has the advantage that any number of
servos can be supported. However, your sketch needs to constantly attend to refreshing
the servo position, so the logic can get complicated as the number of servos increases
if your project needs to perform a lot of other tasks.

This recipe drives four servos according to commands received on the serial port. The
commands are of the following form:

* 180a writes 180 to servo a
¢ 90b writes 90 to servo b
e 0c writes O to servo ¢

e 17d writes 17 to servo d

Here is the sketch that drives four servos connected on pins 7 through 10:

#include <Servo.h> // the servo library

#define SERVOS 4 // the number of servos
int servoPins[SERVOS] = {7,8,9,10}; // servos on pins 7 through 10

Servo myservo[SERVOS];
void setup()
{

Serial.begin(9600);

for(int i=0; i < SERVOS; i++)
myservo[i].attach(servoPins[i]);
}

void loop()

8.4 Controlling Servos from the Serial Port | 269

serviceSerial();

}

// serviceSerial checks the serial port and updates position with received data
// it expects servo data in the form:

// "180a" writes 180 to servo a

// "90b writes 90 to servo b

void serviceSerial()

static int pos = 0;

if (Serial.available()) {
char ch = Serial.read();

if(ch >= '0' &% ch <= '9") // is ch a number?
pos = pos * 10 + ch - '0'; // yes, accumulate the value
else if(ch >= 'a' &&% ch <= 'a'+ SERVOS) // is ch a letter for our servos?
myservo[ch - 'a'].write(pos); // yes, save position in position array
}
Discussion

Connecting the servos is similar to the previous recipes. Each servo line wire gets con-
nected to a digital pin. All servo grounds are connected to Arduino ground. The servo
power lines are connected together, and you may need an external 5V or 6V power
source if your servos require more current than the Arduino power supply can provide.

An array named myservo (see Recipe 2.4) is used to hold references for the four servos.
A for loop in setup attaches each servo in the array to consecutive pins defined in the
servoPins array.

If the character received from serial is a digit (the character will be greater than or equal
to zero and less than or equal to 9), its value is accumulated in the variable pos. If the
character is the letter a, the position is written to the first servo in the array (the servo
connected to pin 7). The letters b, ¢, and d control the subsequent servos.

See Also

See Chapter 4 for more on handling values received over serial.

270 | Chapter8: Physical Output

8.5 Drivinga Brushless Motor (UsingaHobby Speed Controller)

Problem

You have a hobby brushless motor and you want to control its speed.

Solution

This sketch uses the same code as Recipe 8.2. The wiring is similar, except for the speed
controller and motor. Brushless motors have three windings and these should be con-
nected following the instructions for your speed controller (see Figure 8-6).

Signal (White)
Red Wi Servo
EEEE%E gﬁggﬂgg eNot"e [o— +5V(Red)
- = DIGITAL ™| Connected \ Gnd
\—‘ (Black)
E Electronic ™
Speed 1 MT:
‘ "‘ Controller T Po:\r:rr
- o Beoze. MG J6nd
L oogoen GEaEaG Lol
10K < ” A
O,

Figure 8-6. Connecting an electronics speed controller

Discussion

Consult the documentation for your speed controller to confirm that it is suitable for
your brushless motor and to verify the wiring. Brushless motors have three connections
for the three motor wires and two connections for power. Many speed controllers pro-
vide power on the center pin of the servo connector. Unless you want to power the
Arduino board from the speed controller, you must disconnect or cut this center wire.

If your speed controller has a feature that provides 5V power to servos
‘s’% and other devices (called a battery eliminator circuit or BEC for short),

you must disconnect this wire when attaching the Arduino to the speed
controller (see Figure 8-6).

8.5 Driving a Brushless Motor (Using a Hobby Speed Controller) | 271

8.6 Controlling Solenoids and Relays

Problem

You want to activate a solenoid or relay under program control. Solenoids are electro-
magnets that convert electrical energy into mechanical movement. An electromagnetic
relay is a switch that is activated by a solenoid.

Solution

Most solenoids require more power than an Arduino pin can provide, so a transistor
is used to switch the current needed to activate a solenoid. Activating the solenoid is
achieved by using digitalWrite to set the pin HIGH.

This sketch turns on a transistor connected as shown in Figure 8-7. The solenoid will
be activated for one second every hour:

int solenoidPin = 2; // Solenoid connected to transitor on pin 2
void setup()

pinMode(ledPin, OUTPUT);

void loop()
{

long interval = 1000 * 60 * 60 ; // interval = 60 minutes
digitalWrite(solenoidPin, HIGH); // activates the solenoid

delay(1000); // waits for a second
digitalWrite(ledPin, LOW); // deactivates the solenoid
delay(interval); // waits one hour
}
Discussion

The choice of transistor is dependent on the amount of current required to activate the
solenoid or relay. The data sheet may specify this in milliamperes (mA) or as the
resistance of the coil. To find the current needed by your solenoid or relay, divide the
voltage of the coil by its resistance in ohms. For example, a 12V relay with a coil of 185
ohms draws 65 mA: 12 (volts) / 185 (ohms) = 0.065 amps, which is 65 mA.

Small transistors such as the 2N2222 are sufficient for solenoids requiring up to a few
hundred milliamps. Larger solenoids will require a higher power transistor, like the
TIP102/TIP120 or similar. There are many suitable transistor alternatives; see Appen-
dix B for help reading a data sheet and choosing transistors.

The purpose of the diode is to prevent reverse EMF from the coil from damaging the
transistor (reverse EMF is a voltage produced when current through a coil is switched

272 | Chapter8: Physical Output

A Diode | 5
TN4001 2 +V
R e =3
e = .
i a Solenoid
D 3 B b Power
2 VWA Source
U TX1 K
RX0 ' e
| Resistor N2 Gnd
or
N RESETOY TIP102
w0
e
0 Gnd [
Gnd
Vin
TIP102
b . 202222
C
e b

Figure 8-7. Driving a solenoid with a transistor

off). The polarity of the diode is important; there is a colored band indicating the
cathode—this should be connected to the solenoid positive power supply.

Electromagnetic relays are activated just like solenoids. A special relay called a solid
state relay (SSR) has internal electronics that can be driven directly from an Arduino
pin without the need for the transistor. Check the data sheet for your relay to see what
voltage and current it requires; anything more than 40 mA at 5 volts will require a circuit
such as the one shown in Figure 8-7.

8.7 Making an Object Vibrate

Problem

You want something to vibrate under Arduino control. For example, you want your
project to shake for one second every minute.

Solution

Connect a vibration motor as shown in Figure 8-8.

8.7 Making an Object Vibrate | 273

00000000 [III]['J)DDD

e —eohed L =Rra b o Tar Ll =]
LonNES o ~

g DIGITAL ==K
Resistor
j Arduino

01
Diode _| uf

1N4001 A&

4

[
]
=
=
3

AA.
v

e
IN2222

-,

C\‘.) NS o ramrin

— DDU[F]D 0oo0aaq

e

Figure 8-8. Connecting a vibration motor

The following sketch will turn on the vibration motor for one second each minute:

/*
* Vibrate sketch

* Vibrate for one second every minute
*

*/

const int motorPin = 3; // vibration motor transistor is connected to pin 3
void setup()

{

pinMode(motorPin, OUTPUT);

void loop()
{

digitalWrite(motorPin, HIGH); //vibrate
delay(1000); // delay one second
digitalWrite(motorPin, LOW); // stop vibrating
delay(59000); // wait 59 seconds.

}

Discussion

This recipe uses a motor designed to vibrate, such as the SparkFun ROB-08449. If you
have an old cell phone you no longer need, it may contain tiny vibration motors that
would be suitable. Vibration motors require more power than an Arduino pin can
provide, so a transistor is used to switch the motor current on and off. Almost any NPN
transistor can be used; Figure 8-3 shows the common 2N2222 (see this book’s web-
site for supplier information on this and the other components used). A 1 kilohm re-
sistor connects the output pin to the transistor base; the value is not critical, and you
can use values up to 4.7 kilohm or so (the resistor prevents too much current flowing

274 | Chapter8: Physical Output

http://oreilly.com/catalog/9780596802486/
http://oreilly.com/catalog/9780596802486/

through the output pin). The diode absorbs (or snubs—it’s sometimes called a snubber
diode) voltages produced by the motor windings as it rotates. The capacitor absorbs
voltage spikes produced when the brushes (contacts connecting electric current to the
motor windings) open and close. The 33 ohm resistor is needed to limit the amount of
current flowing through the motor.

This sketch sets the output pin HIGH for one second (1,000 milliseconds) and then waits
for 59 seconds. The transistor will turn on (conduct) when the pin is HIGH, allowing
current to flow through the motor.

Here is a variation of this sketch that uses a sensor to make the motor vibrate. The
wiring is similar to that shown in Figure 8-3, with the addition of a photocell connected
to analog pin O (see Recipe 1.6):

/*

* Vibrate Photocell sketch

* Vibrate when photosensor detects light above ambient level
*

*/

const int motorPin = 3; // vibration motor transistor is connected to pin 3
const int sensorPin = 0; // Photodetector connected to analog input 0

int sensorAmbient = 0; // ambient light level (calibrated in setup)
const int thresholdMargin = 100; // how much above ambient needed to vibrate

void setup()

pinMode(motorPin, OUTPUT);
sensorAmbient = analogRead(sensorPin); // get startup light level,;

}
void loop()
{

int sensorValue = analogRead(sensorPin);
if(sensorValue > sensorAmbient + thresholdMargin)

digitalWrite(motorPin, HICH); //vibrate
else

digitalWrite(motorPin, LOW); // stop vibrating
}
}

Here the output pin is turned on when a light shines on the photocell. When the sketch
starts, the background light level on the sensor is read and stored in the variable
sensorAmbient. Light levels read in loop that are higher than this will turn on the
vibration motor.

8.7 Making an Object Vibrate | 275

8.8 Driving a Brushed Motor Using a Transistor

Problem

You want to turn a motor on and off. You may want to control its speed. The motor
only needs to turn in one direction.

Solution

This sketch turns the motor on and off and controls its speed from commands received
on the serial port (Figure 8-9 shows the connections):

* SimpleBrushed sketch
* commands from serial port control motor speed
* digits '0' through '9' are valid where '0' is off, '9' is max speed

*/
const int motorPins = 3; // motor driver is connected to pin 3
void setup()

Serial.begin(9600);

void loop()

if (Serial.available()) {
char ch = Serial.read();

if(ch >= '0' &% ch <= '9") // is ch a number?
{

int speed = map(ch, '0', '9', 0, 255);

analogWrite(3, speed);

Serial.println(speed);
}

else

{

Serial.print("Unexpected character ");
Serial.println(ch);
}
}
}

Discussion

This recipe is similar to Recipe 8.7; the difference is that analoghrite is used to control
the speed of the motor. See “Analog Output” on page 217 in Chapter 7 for more on
analoghrite and Pulse Width Modulation (PWM).

276 | Chapter8: Physical Output

ooooog gg:mrggjé 01
€37 DIGIAL == K J ooee | L
Resistor S 1N4001 A& T i
] ¢ Motor
Arduino SNt Power
oo A Source
W22 6nd
‘ i or
TP102
- Ny Bg22Es MRS
DA,
\/ seesre oOoooa P12
X W22
[

Figure 8-9. Driving a brushed motor

8.9 Controlling the Direction of a Brushed Motor
with an H-Bridge

Problem

You want to control the direction of a brushed motor—for example, you want to cause
a motor to rotate in one direction or the other from serial port commands.

Solution

An H-Bridge can control two brushed motors. Figure 8-10 shows the connections for
the L293D H-Bridge IC; you can also use the SN754410 which has the same pin layout:
/*
* Brushed_H Bridge simple sketch
* commands from serial port control motor direction
* + or - set the direction, any other key stops the motor

*/

const int iniPin
const int in2Pin

5; // H-Bridge input pins
4;

void setup()

Serial.begin(9600);

pinMode(in1Pin, OUTPUT);

pinMode(in2Pin, OUTPUT);

Serial.println("+ - to set direction, any other key stops motor");

}

8.9 Controlling the Direction of a Brushed Motor with an H-Bridge | 277

void loop()
{

if (Serial.available()) {
char ch = Serial.read();
if (ch == '+)

Serial.println("CW");
digitalWrite(iniPin,LOW);
digitalWrite(in2Pin,HICH);

}

else if (ch == '-")

{
Serial.println("CCW");
digitalWrite(iniPin,HICH);
digitalWrite(in2Pin,LOW);

else

{
Serial.print("Stop motor");
digitalWrite(iniPin,LOW);
digitalWrite(in2Pin,LOW);

}
}
}
RESET D I ; vy]
l\ Wm0 F}ﬂwﬁy;]
5v
e A S
R fHe o oz ol oul
b 16= WSS Vs 8 W
D - ENB
1 ENA 1293 To
U _ GND H-Bridge Motor
4 P
5. GND ower
|12 GND
| [3.0 W W2 N N Gnd
a = L|) i <
N 60 f 0 15
5[
0 & ||
H <
23
jrsle]
R0

Figure 8-10. Connecting two brushed motors using an L.293D H-Bridge

278 | Chapter8: Physical Output

Discussion

Table 8-1 shows how the values on the H-Bridge input affect the motor. In the sketch
in this recipe’s Solution, a single motor is controlled using the IN1 and IN2 pins; the
EN pin is permanently HIGH because it is connected to +5V.

Table 8-1. Logic table for H-Bridge

EN IN1 IN2 Function

HIGH LOW HIGH Turn clockwise

HIGH HIGH LOW Turn counterclockwise
HIGH LOW LOW Motor stop

HIGH HIGH HIGH Motor stop

LOW Ignored Ignored Motor stop

Figure 8-5 shows how a second motor can be connected. The following sketch controls

both motors together:
/*
* Brushed_H_Bridge_simple2 sketch
* commands from serial port control motor direction
* + or - set the direction, any other key stops the motors

*/

const int iniPin = 5; // H-Bridge input pins
const int in2Pin = 4;

const int in3Pin = 3; // H-Bridge pins for second motor
const int in4Pin = 2;

void setup()

Serial.begin(9600);

pinMode(in1Pin, OUTPUT);

pinMode(in2Pin, OUTPUT);

pinMode(in3Pin, OUTPUT);

pinMode(in4Pin, OUTPUT);

Serial.println("+ - sets direction of motors, any other key stops motors");

}

void loop()
{

if (Serial.available()) {
char ch = Serial.read();
if (ch == "+")

8.9 Controlling the Direction of a Brushed Motor with an H-Bridge | 279

Serial.println("CW");

// first motor
digitalWrite(in1Pin,LOW);
digitalWrite(in2Pin,HICH);
//second motor
digitalWrite(in3Pin,LOW);
digitalWrite(in4Pin,HICH);

else if (ch == '-")

{
Serial.println("CCW");
digitalWrite(iniPin,HICH);
digitalWrite(in2Pin,LOW);

digitalWrite(in3Pin,HICH);
digitalWrite(in4Pin,LOW);
}

else

{
Serial.print("Stop motors");
digitalWrite(iniPin,LOW);
digitalWrite(in2Pin,LOW);
digitalWrite(in3Pin,LOW);
digitalWrite(in4Pin,LOW);

8.10 Controlling the Direction and Speed of a Brushed Motor
with an H-Bridge

Problem

You want to control the direction and speed of a brushed motor. This extends the
functionality of Recipe 8.9 by controlling both motor direction and speed through
commands from the serial port.

Solution

Connect a brushed motor to the output pins of the H-Bridge as shown in Figure 8-11.

280 | Chapter8: Physical Output

RESET
i i
3 T §

e 3 1 14
R Vinl3 oUT1 0UT2 OUT3 oUT4
— 16 VSS s l8
D 4~ GND +V
_1§: gﬁg 1293 To
U b—— 13 - GND H-Bridge Motor
| = Power
o | ENB
T=ENA I N2 N3 IN4 Gnd
N 7 T) 7 10 15 =
6
¢ L |
0 :
3
2
TX1
RX 003

Figure 8-11. Connecting a brushed motor using analogWrite for speed control

This sketch uses commands from the Serial Monitor to control the speed and direction
of the motor. Sending “0” will stop the motor, and the digits “1” through “9” will
control the speed. Sending “+” and “-” will set the motor direction:

/*
* Brushed_H_Bridge sketch

* commands from serial port control motor speed and direction

* digits '0' through '9' are valid where '0' is off, '9' is max speed
* + or - set the direction

*/

const int enPin 5; // H-Bridge enable pin
const int iniPin = 7; // H-Bridge input pins
const int in2Pin = 4;

void setup()

Serial.begin(9600);

pinMode(in1Pin, OUTPUT);

pinMode(in2Pin, OUTPUT);

Serial.println("Speed (0-9) or + - to set direction");

}

void loop()
{

if (Serial.available()) {
char ch = Serial.read();

8.10 Controlling the Direction and Speed of a Brushed Motor with an H-Bridge | 281

if(ch >= '0' && ch <= '9") // is ch a number?
{

int speed = map(ch, '0', '9', 0, 255);
analogWrite(enPin, speed);
Serial.println(speed);

}
else if (ch == '+")

{
Serial.println("CW");

digitalWrite(iniPin,LOW);
digitalWrite(in2Pin,HICH);

}
else if (ch == '-")

{
Serial.println("CCW");

digitalWrite(iniPin,HICH);
digitalWrite(in2Pin,LOW);
}

else

{

Serial.print("Unexpected character ");
Serial.println(ch);
}
}
}

Discussion

This recipe is similar to Recipe 8.9, in which motor direction is controlled by the levels
on the IN1 and IN2 pins. But in addition, speed is controlled by the analoghrite value
on the EN pin (see Chapter 7 for more on PWM). Writing a value of 0 will stop the
motor; writing 255 will run the motor at full speed. The motor speed will vary in pro-
portion to values within this range.

8.11 Using Sensors to Control the Direction and Speed of
Brushed Motors (L293 H-Bridge)

Problem

You want to control the direction and speed of brushed motors with feedback from
sensors. For example, you want two photo sensors to control motor speed and direction
to cause a robot to move toward a beam of light.

Solution

This Solution uses similar motor connections to those shown in Figure 8-10, but with
the addition of two light dependent resistors, as shown in Figure 8-12.

282 | Chapter8: Physical Output

RESETO
1] o]
L EJ"'ﬂE — 31 T ¢ 1= 1
> and:
D :9 4 vinOl ouT1 0UT2 ouT3 OUT4
b < VSS
* 1l -—12- GND VS 18>y
4%1 ——5— GND 1293 To
2 —12- G ’
L(e i — }l_:: - GHB H-Bridge Motor
D E: 3 = Power
R Analog In 9. ENB g
—, —1=ENA N1 N2 IN3 N4

2 7 0 15
i |

£ — P L i P O

[@/8n[0)N 000N

=
e e

Figure 8-12. Two motors controlled using sensors

The sketch monitors the light level on the sensors and drives the motors to steer toward
the sensor detecting the brighter light level:

* Brushed H Bridge Direction sketch
* uses photo sensors to control motor direction
* robot moves in the direction of a light

*/

int leftPins[] = {5,7,4}; // on pin for PWM, two pins for motor direction
int rightPins[] = {6,3,2};

const int leftSensorPin = 0

; // analog pins with sensors
const int rightSensorPin = 1;

int sensorThreshold = 0; // must have this much light on a sensor to move
int looks = 0; // the number of attempts to turn and find light
void setup()
for(int i=1; i < 3; i++)
{
pinMode(leftPins[i], OUTPUT);
pinMode(rightPins[i], OUTPUT);
}
void loop()
{

int leftval = analogRead(leftSensorPin);

8.11 Using Sensors to Control the Direction and Speed of Brushed Motors (L293 H-Bridge) | 283

int rightVal = analogRead(rightSensorPin);
if(sensorThreshold == 0) // have the sensors been calibrated ?
sensorThreshold = (leftval + rightval) / 2; // no, calibrate sensors

if(leftVal < sensorThreshold 8& rightVal < sensorThreshold)
if(looks < 4) // limit the number of consecutive looks

lookAround();
looks = looks + 1;

}
}

else

// if there is adequate light to move ahead
setSpeed(rightPins, map(rightval,o0,1023, 0,255));
setSpeed(leftPins, map(leftval,0,1023,0,255));
looks = 0; // reset the looks counter

}
}

void lookAround()

{
// rotate left for half a second

setSpeed(leftPins, -127);

setSpeed(rightPins, 127);

delay(500);

setSpeed(rightPins, 0);

setSpeed(leftPins, 127);
}

void setSpeed(int pins[], int speed)
if(speed < 0)
{
digitalWrite(pins[1],HIGH);
digitalWrite(pins[2],LOW);
speed = -speed;

else

digitalwrite(pins[1],LOW);
digitalWrite(pins[2],HIGH);

analoghrite(pins[0], speed);

Discussion

This sketch controls the speed of two motors in response to the amount of light detected
by two photocells. The photocells are arranged so that an increase in light on one side
will increase the speed of the motor on the other side. This causes the robot to turn
toward the side with the brighter light. Light shining equally on both cells makes the

284 | Chapter8: Physical Output

robot move forward in a straight line. Insufficient light causes the robot to stop and
look around to see if there is a light source coming from any other direction.

Light is sensed through analog inputs 0 and 1 (see Recipe 6.2). When the program
starts, the ambient light is measured and this threshold is used to determine the mini-
mum light level needed to move the robot. When light drops below the threshold,
the lookAround function is called to rotate the robot to search for more light.

Motor speed is controlled in the setSpeed function. Two pins are used to control the
direction for each motor and with another pin to control speed. The pin numbers are
held in the leftPins and rightPins arrays. The first pin in each array is the speed pin;
the other two pins are for direction.

An alternative to the 1293 is the Toshiba FB6612FNG. This can be used in any of the
recipes showing the L293D. Figure 8-13 shows the wiring for the FB6612 as used on
the Pololu breakout board (SparkFun ROB-09402).

To
Motor
Power
RESETE Gnd
W3 A
sv (3
Gndc 1
i VMOT AO1 BO1
GND
GND
GND Pololu
vec FB6612FNG
STBY H—Bridge
PWMB
PWMA AIN1 AIN2 BINT BIN2
?E F .Y . .Y I
6
5
4
3=
22
w10
e

Figure 8-13. H-Bridge wiring for the Pololu breakout board

You can reduce the number of pins needed by adding additional hardware to control
the direction pins. This is done by using only one pin per motor for direction, with a
transistor or logic gate to invert the level on the other H-Bridge input. You can find
circuit diagrams for this in the Arduino wiki, but if you want something already wired
up, you can use an H-Bridge shield such as the Freeduino Motor control shield (NKC

8.11 Using Sensors to Control the Direction and Speed of Brushed Motors (L293 H-Bridge) | 285

Electronics ARD-0015) or the Ardumoto from SparkFun (DEV-09213). These shields
plug directly into Arduino and only require connections to the motor power supply
and windings.

Here is the sketch revised for the Ardumoto shield:

/*

* Brushed H Ardumoto sketch

* uses photo sensors to control motor direction
* robot moves in the direction of a light

*/

int leftPins[] = {10,12}; // one pin for PWM, one pin for motor direction
int rightPins[] = {11,13};

const int leftSensorPin = 0

; // analog pins with sensors
const int rightSensorPin = 1;

int sensorThreshold = 0; // must have this much light on a sensor to move
int looks = 0; // the number of attempts to turn and find light

void setup()
{
pinMode(leftPins[1], OUTPUT);

pinMode(rightPins[1], OUTPUT);
Serial.begin(9600);

The loop and lookAround functions are identical to the preceding sketch. setSpeed has
less code because hardware on the shield allows a single pin to control motor direction:

void setSpeed(int pins[], int speed)
if(speed < 0)
{

digitalWrite(pins[1],HIGH);
speed = -speed;

else
digitalWrite(pins[1],LOW);

analoghrite(pins[0], speed);
}
The pin assignments for the Freeduino shield are as follows:
int leftPins[] = {10,13}; // PWM, Direction
int rightPins[] = {9,12}; // PWM, Direction

If you have a different shield, you will need to see the data sheet and make sure the
values in the sketch match the pins used for PWM and direction.

286 | Chapter8: Physical Output

See Also
The data sheet for the Pololu board: http://www.pololu.com/file/0]86/TB6612FNG.pdf

The product page for the Freeduino shield: http://www.nkcelectronics.com/freeduino
-arduino-motor-control-shield-kit. html

The product page for the Ardumoto shield: http://www.sparkfun.com/commerce/prod
uct_info.php?products_id=9213

8.12 Driving a Bipolar Stepper Motor

Problem

You have a bipolar (four-wire) stepper motor and you want to step it under program
control using an H-Bridge.

Solution

This sketch steps the motor in response to serial commands. A numeric value followed
by a + steps in one direction; a - steps in the other. For example, 24+ steps a 24-step
motor through one complete revolution in one direction, and 12- steps half a revolution
in the other direction. Figure 8-14 shows the connections to a four-wire bipolar stepper
using the 1L.293 H-Bridge:
/¥
Stepper_bipolar sketch

stepper is controlled from the serial port.

*

*

*

* a numeric value followed by '+' or '-' steps the motor
*

*

* http://www.arduino.cc/en/Reference/Stepper

*/

#include <Stepper.h>

// change this to the number of steps on your motor
#define STEPS 24

// create an instance of the stepper class, specifying
// the number of steps of the motor and the pins it's
// attached to

Stepper stepper(STEPS, 2, 3, 4, 5);

int steps = 0;

void setup()

// set the speed of the motor to 30 RPMs

8.12 Driving a Bipolar Stepper Motor | 287

http://www.pololu.com/file/0J86/TB6612FNG.pdf
http://www.nkcelectronics.com/freeduino-arduino-motor-control-shield-kit.html
http://www.nkcelectronics.com/freeduino-arduino-motor-control-shield-kit.html
http://www.sparkfun.com/commerce/product_info.php?products_id=9213
http://www.sparkfun.com/commerce/product_info.php?products_id=9213

stepper.setSpeed(30);
Serial.begin(9600);
}

void loop()

if (Serial.available()) {
char ch = Serial.read();

if(ch >= '0' && ch <= '9"){ // is ch a number?
steps = steps * 10 + ch - '0'; // yes, accumulate the value

}
else if(ch == "+"){
stepper.step(steps);

steps = 0;

}

else if(ch == "-"){
stepper.step(steps * -1);
steps = 0;

}
}
}

Four-pin wiring to L293 H-Bridge

G

RESET D
A
tndid § 1= 1
R VinlJ 0UT1 OUTZ OUT3 oUT4
D ——16- g5 Vs 8 W
e
3 e T
U oo MBidge tppe
| 122 6hb
—12- Gnd
L i34GND N N2 N3 N4 "
- I T T e L
N 8 2 10 15
iC
0 He
ic
™ig
rRx 0]

Figure 8-14. Four-wire bipolar stepper using .293 H-Bridge

Discussion

If your stepper requires a higher current than the L293 can provide (600 mA for the
L293D), you can use the SN754410 chip that handles up to 1 amp. For current up to
2 amps, you can use the 1298 chip. The L298 can use the same sketch as shown in this
recipe’s Solution, and it should be connected as shown in Figure 8-15.

288 | Chapter8: Physical Output

Arduino with L298 H-Bridge

RESET Y

A w0
65‘5[]
R BT
Vin +—i— 2 = 3 13 T 14
D 0.1uf 0UTT ouT2 OUT3 ouT4
9.4yss
U L6enn vs
L 114{ENB
1298
| 14 Sense A
N 15 4Sense B
7
éﬁ 8 {GND INT IN2 IN3 N4
0 5 | 5 7 10 12
3
e | N
mig
R0 O3

Motor
Power

Figure 8-15. Unipolar stepper with L.298

A simple way to connect an L.298 to Arduino is to use the SparkFun Ardumoto shield
(DEV-09213). This plugs on top of an Arduino board and only requires external con-
nection to the motor windings; the motor power comes from the Arduino Vin (external
Voltage Input) pin. In1/2 is controlled by pin 12, and ENA is pin 10. In3/4 is connected
to pin 13, and ENB is on pin 11. Make the following changes to the code to use the

preceding sketch with Ardumoto:

Stepper stepper(STEPS, 12,13);
int steps = 0;

In setup:

pinMode (10, OUTPUT);

digitalWrite(10, LOW); // enable A

// set the speed of the motor to 30 RPMs
stepper.setSpeed(30);
Serial.begin(9600);

pinMode (11, OUTPUT);

digitalWrite(11, LOW); // enable B

The loop code is the same as the previous sketch.

8.12 Driving a Bipolar Stepper Motor | 289

8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver
Board)

Problem

You have a bipolar (four-wire) stepper motor and you want to step it under program
control using the EasyDriver board.

Solution

This Solution is similar to Recipe 8.12, but it uses the popular EasyDriver board.
Figure 8-16 shows the connections.

® :
Stepper
Power
Gnd +V
i I 1
o

RESET ﬁAé 636 o0 o0

3 PFD Rst Enable MS2 Gnd M+

Motor

5V . Pwr In
Gnd .
R o)
vin[J O R

Gnd +5v APWR Slp Ms1 EasyDriver Gnd Step Dir
00 I ©0 Verd2 Q@O

08

oO=——C O = =

— P b g

TX E
RX 0

Figure 8-16. Connecting the EasyDriver board

The following sketch controls the step direction and count from the serial port. Unlike
the code in Recipe 8.12, it does not require the stepper library, because the EasyDriver
board handles the control of the motor coils in hardware:
/*
* Stepper Easystepper sketch
*

* stepper is controlled from the serial port.
* a numeric value followed by '+' or '-' steps the motor

290 | Chapter8: Physical Output

*

*/

const int dirPin = 2;
const int stepPin = 3;

int speed = 100; // desired speed in steps per second
int steps = 0; // the number of steps to make

void setup()
{

pinMode(dirPin, OUTPUT);
pinMode(stepPin, OUTPUT);
Serial.begin(9600);

}

void loop()
{

if (Serial.available()) {
char ch = Serial.read();

if(ch >= '0' && ch <= '9"){ // is ch a number?
steps = steps * 10 + ch - '0'; // yes, accumulate the value

}

else if(ch == "+"){
step(steps);
steps = 0;

}

else if(ch == "-"){
step(-steps);
steps = 0;

}

else if(ch == "'s"){
speed = steps;
Serial.print("Setting speed to ");
Serial.println(steps);
steps = 0;

}

}
}

void step(int steps)

int stepDelay = 1000 / speed; //delay in ms for speed given as steps per sec
int stepsleft;

// determine direction based on whether steps_to_mode is + or -
if (steps > 0)

digitalWrite(dirPin, HIGH);
stepsLeft = steps;

if (steps < 0)

digitalWrite(dirPin, LOW);

8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board) | 291

stepsLeft = -steps;
}

// decrement the number of steps, moving one step each time
while(stepsLeft > 0)

digitalWrite(stepPin,HICH);
delayMicroseconds(1);
digitalWrite(stepPin,LOW);
delay(stepDelay);
stepsLeft--; // decrement the steps left
}
}

Discussion

The EasyDriver board is powered through the pins marked “M+” and “Gnd” (shown
in the upper right of Figure 8-16). The board operates with voltages between 8 volts
and 30 volts; check the specifications of your stepper motor for the correct operating
voltage. If you are using a 5V stepper, you must provide 5 volts to the pins marked
“Gnd” and “+5V” (these pins are on the lower left of the EasyDriver board) and cut
the jumper on the printed circuit board marked “APWR” (this disconnects the on-
board regulator and powers the motor and EasyDriver board from an external 5V
supply).

You can reduce current consumption when the motor is not stepping by connecting
the Enable pin to a spare digital output and setting this HIGH to disable output (a LOW
value enables output).

Stepping options are selected by connecting the MS1 and MS2 pins to +5V (HIGH) or
Gnd (LOW), as shown in Table 8-2. The default options with the board connected as
shown in Figure 8-16 will use eighth-step resolution (MS1 and MS2 are HIGH, Reset is
HIGH, and Enable is LOW).

Table 8-2. Microstep options

Resolution ~ MS1 MS2
Full step LOW LOW
Half step HIGH LOW
Quarterstep LOW HIGH
Eighthstep ~ HIGH HIGH

You can modify the code so that the speed value determines the revolutions per second
as follows:
// use the following for speed given in RPM

int speed = 100; // desired speed in RPM
int stepsPerRevolution = 200; // this line sets steps for one revolution

292 | Chapter8: Physical Output

Change the step function so that the first line is as follows:
int stepDelay = 60L * 1000L / stepsPerRevolution / speed; // speed as RPM

Everything else can remain the same, but now the speed command you send will be
the RPM of the motor when it steps.

8.14 Driving a Unipolar Stepper Motor (ULN2003A)

Problem

You have a unipolar (five- or six-wire) stepper motor and you want to control it using
a ULN2003A Darlington driver chip.

Solution

Connect a unipolar stepper as shown in Figure 8-17. The +V connection goes to a power
supply rated for the voltage and current needed by your motor.

Unipolar Stepper — 4 wire

To
Stepper
Gnd power +V

F 3

A g8

R Gnd
Gnd (F——v 16 15 14 13
Vin(Q

D T ouT2 OUT3 ouT4

p ot

U T o oo ULN2003

| N1 IN2 N3 N4
7

N gg 1 2 3 3
4
a L — |

0 B
RY00)

Figure 8-17. Unipolar stepper connected using ULN2003 driver

8.14 Driving a Unipolar Stepper Motor (ULN2003A) | 293

The following sketch steps the motor using commands from the serial port. A numeric
value followed by a + steps in one direction; a - steps in the other:
Stepper sketch

*
*
* stepper is controlled from the serial port.

* a numeric value followed by '+' or '-' steps the motor
*

*

*

http://www.arduino.cc/en/Reference/Stepper

#include <Stepper.h>

// change this to the number of steps on your motor
#define STEPS 24

// create an instance of the stepper class, specifying
// the number of steps of the motor and the pins it's
// attached to

Stepper stepper(STEPS, 2, 3, 4, 5);

int steps = 0;

void setup()

stepper.setSpeed(30); // set the speed of the motor to 30 RPMs
Serial.begin(9600);
}

void loop()
{

if (Serial.available()) {
char ch = Serial.read();

if(ch >= '0" & ch <= '9'){ // is ch a number?
steps = steps * 10 + ch - '0'; // yes, accumulate the value

else if(ch == "+'){
stepper.step(steps);

steps = 0;

}

else if(ch == "-"){
stepper.step(steps * -1);
steps = 0;

}

294 | Chapter8: Physical Output

else if(ch == 's'){
stepper.setSpeed(steps);
Serial.print("Setting speed to ");
Serial.println(steps);
steps = 0;

}

}
}

Discussion

This type of motor has two pairs of coils, and each coil has a connection to the center.
Motors with only five wires have both center connections brought out on a single wire.
If the connections are not marked, you can identify the wiring using a multimeter.
Measure the resistance across pairs of wires to find the two pairs of wires that have the
maximum resistance. The center tap wire should have half the resistance of the full coil.
A step-by-step procedure is available at http://techref.massmind.org/techreflio/stepper/
wires.asp.

8.14 Driving a Unipolar Stepper Motor (ULN2003A) | 295

http://techref.massmind.org/techref/io/stepper/wires.asp
http://techref.massmind.org/techref/io/stepper/wires.asp

CHAPTER9
Audio OQutput

9.0 Introduction

The Arduino isn’t built to be a synthesizer, but it can certainly produce sound through
an output device such as a speaker.

Sound is produced by vibrating air. A sound has a distinctive pitch if the vibration
repeats regularly. The Arduino can create sound by driving a loudspeaker or Piezo
device (a small ceramic transducer that produces sound when pulsed), converting elec-
tronic vibrations into speaker pulses which vibrate the air. The pitch (frequency) of the
sound is determined by the time it takes to pulse the speaker in and out; the shorter
the amount of time, the higher the frequency.

The unit of frequency is measured in hertz, and it refers to the number of times the
signal goes through its repeating cycle in one second. The range of human hearing is
from around 20 hertz (Hz) up to 20,000 hertz (although it varies by person and changes
with age).

The Arduino software includes a tone function for producing sound. Recipes 9.1 and
9.2 show how to use this function to make sounds and tunes. The tone function uses
hardware timers. On a standard Arduino board, only one tone can be produced at a
time. Sketches where the timer (timer2) is needed for other functions, such as analog
Write on pin 9 or 10, cannot use the tone function. To overcome this limitation, Rec-
ipe 9.3 shows how to use an enhanced tone library for multiple tones, and Recipe 9.4
shows how sound can be produced without using the tone function or hardware timers.

The sound that can be produced by pulsing a speaker is limited and does not sound
very musical. The output is a square wave (see Figure 9-1), which sounds harsh and
more like an antique computer game than a musical instrument.

It is difficult for Arduino to produce more musically complex sounds without external
hardware. You can add a shield that extends Arduino’s capabilities; Recipe 9.5 shows

how to use the Adafruit wave shield to play back audio files from a memory card on
the shield.

297

Frequency is the number of cycles per second.
Period is the time for one cycle.
Period = 1/ Frequency

1 1

Speaker cone
pushes air
when pin goes high
Pulse is _,.l
half period
4— Period (one cycle) ——»

Figure 9-1. Generating sound using digital pulses

You can also use Arduino to control an external device that is built to make sound.
Recipe 9.6 shows how to send Musical Instrument Digital Interface (MIDI) messages
to a MIDI device. These devices produce high-quality sounds of a huge variety of in-
struments and can produce the sounds of many instruments simultaneously. The
sketch in Recipe 9.6 shows how to generate MIDI messages to play a musical scale.

Recipe 9.7 provides an overview of an application called Auduino that uses complex
software processing to synthesize sound.

This chapter covers the many ways you can generate sound electronically. If you want
to make music by getting Arduino to play acoustic instruments (such as glockenspiels,
drums, and acoustic pianos), you can employ actuators such as solenoids and servos
that are covered in Chapter 8.

Many of the recipes in this chapter will drive a small speaker or Piezo device. The circuit
for connecting one of these to an Arduino pin is shown in Figure 9-2.

The 100 ohm resistor is used to limit the current that can flow through the speaker (too
much current can damage an Arduino pin). A speaker will work regardless of which
wire is attached to ground, but a Piezo is polarized, so connect the negative wire (usually
black) to the Gnd pin. If you want to adjust the volume, you can connect a 500 or
1K ohm variable resistor, as shown in Figure 9-2.

Alternatively, you can connect the output to an external audio amplifier. Recipe 5.7
shows how an output pin can be connected to an audio jack.

298 | Chapter9: Audio Output

Speakeror
A Piezo transducer
R AREF
D GND
g L._
U 12
| nQg |—‘/¥V‘
fic ME—YY
N 9 —
0 e 100 Ohm Optional
. Volume
Resistor
Control

Figure 9-2. Connecting to an audio transducer

W
A

The voltage level (5 volts) is higher than audio amplifiers expect, so you
may need to use another 4.7K variable resistor to reduce the voltage
%s" (connect one end to pin 3 and the other end to ground; then connect
" the slider to the tip of the jack plug).

9.1 Playing Tones

Problem

You want to produce audio tones through a speaker or other audio transducer. You
want to specify the frequency and duration of the tone.

Solution

Use the Arduino tone function. This sketch plays a tone with the frequency set by a
variable resistor (or other sensor) connected to analog input 0 (see Figure 9-3):

* Tone sketch

* Plays tones through a speaker on digital pin 9

* frequency determined by values read from analog port

*/

const int speakerPin = 9; // connect speaker to pin 9
const int pitchPin = o; // pot that will determine the frequency of the tone

void setup()
}

void loop()
{

int sensorOReading = analogRead(pitchPin); // read input to set frequency

9.1 Playing Tones | 299

// map the analog readings to a meaningful range

int frequency = map(sensorOReading, 0, 1023, 100,5000); //100Hz to 5kHz
int duration = 250; // how long the tone lasts

tone(speakerPin, frequency, duration); // play the tone

delay(1000); //pause one second

}
D[J[II]DJ]D OO000004a
= DIGITAL
Speakeror
. ~Jpea
piezo
AdeIﬂO @) transducer
Resistor
(fixed or variable)
i Pot to S;-;ona:j PJ?r to
- B ANALOG aaﬂr‘usr_.‘_\ﬁ adjust delay is
Yy E22BEE e Pitch optional
OION. = T.FDDDD """“l_.: _.5;,/
- >

Figure 9-3. Connections for the Tone sketch

The tone function can take up to three parameters: the pin attached to the speaker, the
frequency to play (in hertz), and the length of time (in milliseconds) to play the note.
The third parameter is optional. If it is omitted, the note will continue until there is
another call to tone, or a call to noTone. The value for the frequency is mapped to sensible
values for audio frequencies in the following line:

int frequency = map(sensorOReading, 0, 1023, 100,5000); //100Hz to 5kHz

This variation uses a second variable resistor (the right-hand pot in Figure 9-3) to set
the duration of the tone:

const int speakerPin = 9; // connect speaker to pin 9

const int pitchPin = 0; // input that determines frequency of the tone

const int durationPin = 1; // input that will determine the duration of the tone
void setup()

}

void loop()

{

int sensorOReading = analogRead(pitchPin); // read input for frequency
int sensoriReading = analogRead(durationPin); // read input for duration

// map the analog readings to a meaningful range

300 | Chapter9: Audio Output

int frequency = map(sensorOReading, 0, 1023, 100,5000); // 100Hz to 5kHz
int duration = map(sensoriReading, 0, 1023, 100,1000); // dur 0.1-1 second
tone(speakerPin, frequency, duration); // play the tone

delay(duration); //wait for the tone to finish

}

Another variation is to add a switch so that tones are generated only when the switch
is pressed.

Enable pull-up resistors in setup with this line (see Recipe 5.2 for a connection diagram
and explanation):

digitalWrite(inputPin,HIGH); // turn on internal pull-up on the inputPin

Modify the loop code so that the tone and delay functions are only called when the
switch is pressed:

if(digitalRead(inputPin) = LOW) // read input value

tone(speakerPin, frequency, duration); // play the tone
delay(duration); //wait for the tone to finish

}

You can use almost any audio transducer to produce sounds with Arduino. Small
speakers work very well. Piezo transducers also work and are inexpensive, robust, and
easily salvaged from old audio greeting cards. Piezos draw little current (they are high-
resistance devices), so they can be connected directly to the pin. Speakers are usually
of much lower resistance and need a resistor to limit the current flow. The components
to build the circuit pictured in Figure 9-3 should be easy to find; see this book’s web-
site for suggestions on getting parts.

See Also

You can achieve enhanced functionality using the Tone library by Brett Hagman that
is described in Recipe 9.3.

9.2 Playing a Simple Melody

Problem

You want Arduino to play a simple melody.

Solution

You can use the tone function described in Recipe 9.1 to play sounds corresponding to
notes on a musical instrument. This sketch uses tone to play a string of notes, the “Hello
world” of learning the piano, “Twinkle, Twinkle Little Star”:

/*

* Twinkle sketch
*

9.2 Playing a Simple Melody | 301

http://oreilly.com/catalog/9780596802486/
http://oreilly.com/catalog/9780596802486/

* Plays "Twinkle, Twinkle Little Star"
*

* speaker on digital pin 9

*/
const int speakerPin = 9; // connect speaker to pin 9

char noteNames[] = {'c,'n','E','F','¢",'a",'b"};

unsigned int frequencies[] = {262,294,330,349,392,440,494};

const byte noteCount = sizeof(noteNames); // the number of notes (7 in this
example)

//notes, a space represents a rest
char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC “;
const byte scoreLen = sizeof(score); // the number of notes in the score

void setup()

}
void loop()
{

for (int i = 0; i < scorelen; i++)

{

int duration = 333; // each note lasts for a third of a second
playNote(score[i], duration); // play the note

delay(4000); // wait four seconds before repeating the song

void playNote(char note, int duration)

// play the tone corresponding to the note name
for (int i = 0; i < noteCount; i++)

{
// try and find a match for the noteName to get the index to the note

if (noteNames[i] == note) // find a matching note name in the array
tone(speakerPin, frequencies[i], duration); // play the note using the
frequency

// if there is no match then the note is a rest, so just do the delay
delay(duration);

noteNames is an array of characters to identify notes in a score. Each entry in the array
is associated with a frequency defined in the notes array. For example, note C (the first
entry in the noteNames array) has a frequency of 262 Hz (the first entry in the notes array).

score is an array of notes representing the note names you want to play:

char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC "; // a space
represents a rest

302 | Chapter9: Audio Output

Each character in the score that matches a character in the noteNames array will make
the note play. The space character is used as a rest, but any character not defined in
noteNames will also produce a rest (no note playing).

The sketch calls playNote with each character in the score and a duration for the notes
of one-third of a second.

The playNote function does a lookup in the noteNames array to find a match and uses
the corresponding entry in the frequencies array to get the frequency to sound.

Every note has the same duration. If you want to specify the length of each note, you
can add the following code to the sketch:

byte beats[scorelen] = {1,1,1,1,1,1,2, 1,1,1,1,1,2,1,
1,1,1,1,1,1,2, 1,1,1,1,1,2,1,
1,1,1,1,1,1,2, 1,1,1,1,1,1,2};

byte beat = 180; // beats per minute for eighth notes

unsigned int speed = 60000 / beat; // the time in ms for one beat

1,
1,

beats is an array showing the length of each note: 1 is an eighth note, 2 a quarter note,
and so on.

beat is the number of beats per minute.
speed is the calculation to convert beats per minute into a duration in milliseconds.

The only change to the loop code is to set the duration to use the value in the beats
array. Change:

int duration = 333; // each note lasts for a third of a second

to:

int duration = beats[i] * speed; // use beats array to determine duration

9.3 Generating More Than One Simultaneous Tone

Problem

You want to play two tones at the same time. The Arduino Tone library only produces
a single tone on a standard board, and you want two simultaneous tones. Note that
the Mega board has more timers and can produce up to six tones.

Solution

The Arduino Tone library is limited to a single tone because a different timer is required
for each tone, and although a standard Arduino board has three timers, one is used for
the millis function and another for servos. This recipe uses a library written by Brett
Hagman, the author of the Arduino tone function. The library enables you to generate
multiple simultaneous tones. You can download it from http://code.google.com/p/rogue
-code/wiki/ToneLibraryDocumentation.

9.3 Generating More Than One Simultaneous Tone | 303

http://code.google.com/p/rogue-code/wiki/ToneLibraryDocumentation
http://code.google.com/p/rogue-code/wiki/ToneLibraryDocumentation

This is an example sketch from the download that plays two tones selectable from the
serial port:

/*

* Dual Tones - Simultaneous tone generation.

* plays notes 'a' through 'g' sent over the Serial Monitor.

* lowercase letters for the first tone and uppercase for the second.
* 's' stops the current playing tone.

*/

#include <Tone.h>

int notes[] = { NOTE_A3,
NOTE_B3,
NOTE_C4,
NOTE D4,
NOTE_E4,
NOTE_F4,
NOTE G4 };

// You can declare the tones as an array
Tone notePlayer[2];

void setup(void)

Serial.begin(9600);

notePlayer[0].begin(11);

notePlayer[1].begin(12);
}

void loop(void)
char c;

if(Serial.available())
{

¢ = Serial.read();

switch(c)
{
case 'a'...'g":
notePlayer[0].play(notes[c - 'a'l]);
Serial.println(notes[c - 'a']);

break;

case 's':
notePlayer[0].stop();
break;

case 'A'...'G":

notePlayer[1].play(notes[c - 'A']);
Serial.println(notes[c - 'A']);
break;

case 'S':
notePlayer[1].stop();
break;

304 | Chapter9: Audio Output

default:
notePlayer[1].stop();
notePlayer[0].play(NOTE_B2);
delay(300);
notePlayer[0].stop();
delay(100);
notePlayer[1].play(NOTE_B2);
delay(300);
notePlayer[1].stop();
break;

}
}
}

Discussion

To mix the output of the two tones to a single speaker, use 500 ohm resistors from each
output pin and tie them together at the speaker. The other speaker lead connects to
Gnd, as shown in the previous sketches.

On a standard Arduino board, the first tone will use timer 2 (so PWM on pins 9 and
10 will not be available); the second tone uses timer 1 (preventing the Servo library and
PWM on pins 11 and 12 from working). On a Mega board, each simultaneous tone
will use timers in the following order: 2, 3,4, 5, 1, 0.

Playing three simultaneous notes on a standard Arduino board, or more
‘“% than six on a Mega, is possible, butmillis and delay will no longer work

properly. It is safest to use only two simultaneous tones (or five on a
Mega).

9.4 Generating Audio Tones and Fading an LED

Problem

You want to produce sounds through a speaker or other audio transducer, and you
need to generate the tone in software instead of with a timer; for example, if you need
to use analoghrite on pin 9 or 10.

Solution

The tone function discussed in earlier recipes is easier to use, but it requires a hardware
timer, which may be needed for other tasks such as analoghrite. This code does not
use a timer, but it will not do anything else while the note is played. Unlike the Arduino
tone function, the playTone function described here will block—it will not return until
the note has finished.

This sketch generates tones without a timer. It plays six notes, each one twice the
frequency of (an octave higher than) the previous one. The playTone function generates

9.4 Generating Audio Tones and Fadingan LED | 305

a tone for a specified duration on a speaker or Piezo device connected to a digital output
pin and ground; see Figure 9-4:

byte speakerPin = 9;
byte ledPin = 10;
void setup()

{

pinMode(speakerPin, OUTPUT);

void playTone(int period, int duration)

// period is one cycle of tone

// duration is how long the pulsing should last in milliseconds
int pulse = period / 2;
for (long i = 0; i < duration * 1000L; i += period)

digitalWrite(speakerPin, HICH);
delayMicroseconds(pulse);
digitalWrite(speakerPin, LOW);
delayMicroseconds(pulse);

}
}

void fadeLED(){
for (int brightness = 0; brightness < 255; brightness++)

analogWrite(ledPin, brightness);
delay(2);

for (int brightness = 255; brightness >= 0; brightness--) {

analoghrite(ledPin, brightness);
delay(2);

}
void loop()
{

// a note with period of 15289 is deep C (second lowest C note on piano)
for(int period=15289; period >= 477; period=period / 2) // play 6 octaves

playTone(period, 200); // play tone for 200 milliseconds

}
fadeLED();

Discussion

Two values are used by playTone: period and duration. The variable period represents
the time for one cycle of the tone to play. The speaker is pulsed high and then low for

306 | Chapter9: Audio Output

Speaker or
Piezo transducer

GND 220
2 e Ohm

e vWA
100 Ohm
Resistor

Figure 9-4. Connections for speaker and LED

the number of microseconds given by period. The for loop repeats the pulsing for the
number of milliseconds given in the duration argument.

If you prefer to work in frequency rather than period, you can use the reciprocal rela-
tionship between frequency and period; period is equal to 1 divided by frequency. You
need the period value in microseconds; because there are 1 million microseconds in
one second, the period is calculated as 1000000L / frequency (the “L” at the end of that
number tells the compiler that it should calculate using long integer math to prevent
the calculation from exceeding the range of a normal integer—see the explanation of
long integers in Recipe 2.2):

void playFrequency(int frequency, int duration)

int period = 1000000L / frequency;
int pulse = period / 2;

The rest of the code is the same as playTone:

for (long i = 0; i < duration * 1000L; i += period)

digitalWrite(speakerPin, HICH);
delayMicroseconds(pulse);
digitalWrite(speakerPin, LOW);
delayMicroseconds(pulse);
}
}

The code in this recipe stops and waits until a tone has completed before it can do any
other processing. It is possible to produce the sound in the background (without wait-
ing for the sound to finish) by putting the sound generation code in an interrupt handler.
The source code for the tone function that comes with the Arduino distribution shows
how this is done.

See Also
Recipe 9.7

9.4 Generating Audio Tones and Fadingan LED | 307

Here are some examples of more complex audio synthesis that can be accomplished
with the Arduino:

Pulse-Code Modulation
PCM allows you to approximate analog audio using digital signaling. An Arduino
wiki article that explains how to produce 8-bit PCM using a timer is available at
http://www.arduino.cc/playground/Code/PCMAudio.

Pocket Piano shield
Critter and Guitari’s Pocket Piano shield gives you a piano-like keyboard, wave
table synthesis, FM synthesis, and more; see http://www.critterandguitari.com/
home/store/arduino-piano.php.

9.5 Playing a WAV File

Problem

Under program control, you want Arduino to trigger the playing of a WAV file.

Solution

This sketch uses the Adafruit wave shield and is based on one of the example sketches
linked from the product page at http://www.adafruit.com/index.php>main_page=prod
uct_info&products_id=94.

This sketch will play one of nine files depending on readings taken from a variable
resistor connected to analog input O when pressing a button connected to pin 15 (analog
input 1):

WaveShieldPlaySelection sketch
play a selected WAV file

Position of variable resistor slider when button pressed selects file to play

#include <FatReader.h>
#include <SdReader.h>
//#include <avr/pgmspace.h>

#include "WaveHC.h"
#include "WaveUtil.h"

SdReader card; // This object holds the information for the card

FatVolume vol; // This holds the information for the partition on the card
FatReader root; // This holds the information for the volumes root directory
FatReader file; // This object represents the WAV file

WaveHC wave; // Only wave (audio) object - only one file played at a time

308 | Chapter9: Audio Output

http://www.arduino.cc/playground/Code/PCMAudio
http://www.critterandguitari.com/home/store/arduino-piano.php
http://www.critterandguitari.com/home/store/arduino-piano.php
http://www.adafruit.com/index.php?main_page=product_info&products_id=94
http://www.adafruit.com/index.php?main_page=product_info&products_id=94

const int buttonPin = 15;
const int potPin = 0; // analog input pin 0

char * wavFiles[] = {
"1.WAV", "2 WAV", "3 WAV", "4 WAV", "5 WAV" "6 . WAV" "7 . WAV", "8 . WAV" , "9 . WAV" };

void setup()
{

Serial.begin(9600);
pinMode(buttonPin, INPUT);
digitalWrite(buttonPin, HIGH); // turn on pull-up resistor

if (!card.init())
{

// Something went wrong, sdErrorCheck prints an error number
putstring nl("Card init. failed!");

sdErrorCheck();

while(1); // then 'halt' - do nothing!

// enable optimized read - some cards may time out
card.partialBlockRead(true);

// find a FAT partition!
uint8_t part;

for (part = 0; part < 5; part++) // we have up to 5 slots to look in
if (vol.init(card, part))
break; // found one so break out of this for loop
if (part == 5) // valid parts are 0 to 4, more not valid
putstring nl("No valid FAT partition!");
sdErrorCheck(); // Something went wrong, print the error
while(1); // then 'halt' - do nothing!

// tell the user about what we found

putstring("Using partition ");

Serial.print(part, DEC);

putstring(", type is FAT");
Serial.println(vol.fatType(),DEC); // FAT16 or FAT32?

// Try to open the root directory
if (!root.openRoot(vol))

putstring nl("Can't open root dir!"); // Something went wrong,

while(1); // then 'halt' - do nothing!

// if here then all the file prep succeeded.
putstring nl("Ready!");

9.5 Playinga WAVFile | 309

void loop()
if(digitalRead(buttonPin) == LOW)
{

int value = analogRead(potPin);
int index = map(value,0,1023,0,8); // index into one of the 9 files
playcomplete(wavFiles[index]);
Serial.println(value);
}
}

// Plays a full file from beginning to end with no pause.
void playcomplete(char *name)

// call playfile find and play this name
playfile(name);
while (wave.isplaying) {

// do nothing while it's playing

}
// now it's done playing
}

void playfile(char *name) {
// see if the wave object is currently doing something
if (wave.isplaying) {
// already playing something, so stop it!
wave.stop(); // stop it

}

// look in the root directory and open the file

if (!file.open(root, name)) {
putstring("Couldn't open file ");
Serial.print(name);
return;

// read the file and turn it into a wave object
if (!wave.create(file)) {

putstring nl("Not a valid WAV");

return;

// start playback
wave.play();
void sdErrorCheck(void)

if (!card.errorCode()) return;
putstring("\n\rSD I/0 error: ");

310 | Chapter9: Audio Output

Serial.print(card.errorCode(), HEX);
putstring(", ");
Serial.println(card.errorData(), HEX);
while(1)
5 // stay here if there is an error
}

Discussion

The wave shield reads data stored on an SD card. It uses its own library that is available
from the Ladyada website (http://www.ladyada.net/make/waveshield/). The WAV files
to be played need to be put on the memory card using a computer. They must be
22 KHz, 12-bit uncompressed mono files, and the filenames must be in 8.3 format. The
open source audio utility Audacity can be used to edit or convert audio files to the
correct format. The wave shield accesses the audio file from the SD card, so the length
of the audio is only limited by the size of the memory card.

See Also

The Ladyada wave shield library and documentation: http://www.ladyada.net/make/
waveshield/

Audacity audio editing and conversion software: http://audacity.sourceforge.net/

SparkFun offers a range of audio modules, including an Audio-Sound Module (http:/
www.sparkfun.com/products/9534) and MP3 breakout board (http://www.sparkfun
.com/products/8954).

9.6 Controlling MIDI

Problem

You want to get a MIDI synthesizer to play music using Arduino.

Solution

To connect to a MIDI device, you need a five-pin DIN plug or socket. If you use a
socket, you will also need a lead to connect to the device. Connect the MIDI connector
to Arduino using a 220-ohm resistor, as shown in Figure 9-5.

9.6 Controlling MIDI | 311

http://www.ladyada.net/make/waveshield/
http://www.ladyada.net/make/waveshield/
http://www.ladyada.net/make/waveshield/
http://audacity.sourceforge.net/
http://www.sparkfun.com/products/9534
http://www.sparkfun.com/products/9534
http://www.sparkfun.com/products/8954
http://www.sparkfun.com/products/8954

MiDI
Connector
Qaa00000 Q00A00aa
= DIGITAL T
Arduino
> 220
I > Ohm

Figure 9-5. MIDI connections

To upload the code onto Arduino, you should disconnect the MIDI device as it may
interfere with the upload. After the sketch is uploaded, connect a MIDI sound device
to the Arduino output. A musical scale will play each time you press the button con-

nected to pin 2:
/*
midiOut sketch
sends MIDI messages to play a scale on a MIDI instrument
each time the switch on pin 2 is pressed

*/

//these numbers specify which note

const byte notes[8] = {60, 62, 64, 65, 67, 69, 71, 72};
//they are part of the MIDI specification

const int length = 8;

const int switchPin = 2;

const int ledPin = 13;

void setup() {
Serial.begin(31250);
pinMode(switchPin, INPUT);
digitalWrite(switchPin, HICH);
pinMode(ledPin, OUTPUT);

}

void loop() {
if (digitalRead(switchPin == LOW))

for (byte noteNumber = 0; noteNumber < 8; noteNumber++)

312 | Chapter9: Audio Output

playMidiNote(1, notes[noteNumber], 127);
digitalWrite(ledPin, HICH);

delay(70);

playMidiNote(1, notes[noteNumber], 0);
digitalWrite(ledPin, HIGH);

delay(30);

void playMidiNote(byte channel, byte note, byte velocity)

byte midiMessage= 0x90 + (channel - 1);
Serial.print(midiMessage, BYTE);
Serial.print(note, BYTE);
Serial.print(velocity, BYTE);

}

Discussion

This sketch uses the serial port to send MIDI information. The circuit connected to
pin 1 may interfere with uploading code to the board. Remove the wire from pin 1 while
you upload, and plug it back in afterward.

MIDI was originally used to connect digital musical instruments together so that one
could control another. The MIDI specification describes the electrical connections and
the messages you need to send.

MIDI is actually a serial connection (at a nonstandard serial speed, 31,250 baud), so
Arduino can send MIDI messages using its serial port hardware from pins 0 and 1.
Because the serial port is occupied by MIDI messages, you can’t print messages to the
Serial Monitor, so the sketch flashes the LED on pin 13 each time it sends a note.

Each MIDI message consists of at least one byte. This byte specifies what is to be done.
Some commands need no other information, but other commands need data to make
sense. The message in this sketch is note on, which needs two pieces of information:
which note and how loud. Both of these bits of data are in the range of zero to 127.

The sketch initializes the serial port to a speed of 31,250 baud; the other MIDI-specific
code is in the function playMidiNote:

void playMidiNote(byte channel, byte note, byte velocity)

byte midiMessage= 0x90 + (channel - 1);
Serial.print(midiMessage, BYTE);
Serial.print(note, BYTE);
Serial.print(velocity, BYTE);

}

This function takes three parameters and calculates the first byte to send using the
channel information.

9.6 Controlling MIDI | 313

MIDI information is sent on different channels between 1 and 16. Each channel can be
set to be a different instrument, so multichannel music can be played. The command
for note on (to play a sound) is a combination of 0x90 (the top four bits at b1001), with
the bottom four bits set to the numbers between b0000 and b1111 to represent the
MIDI channels. The byte represents channels using zero to 15 for channels 1 to 16, so
1 is subtracted first.

Then the note value and the volume (referred to as velocity in MIDI, as it originally
related to how fast the key was moving on a keyboard) are sent.

The serial print statements specify that the values must be sent as bytes (rather than a
series of ASCII characters) spelling out the numerals. println is not used because a line
return character would insert additional bytes into the signal that are not wanted.

The sound is turned off by sending a similar message, but with velocity set to 0.

This recipe works with MIDI devices having five-pin DIN MIDI in connectors. If your
MIDI device only has a USB connector, this will not work. It will not enable the Arduino
to control MIDI music programs running on your computer without additional hard-
ware (a MIDI to USB adapter). Although Arduino has a USB connector, your computer
recognizes it as a serial device, not a MIDI device.

See Also

To send and receive MIDI, have a look at the MIDI library available at http:/www
.arduino.cc/playground/Main/MIDILibrary.

MIDI messages are described in detail at http://www.midi.org/techspecs/midimessages
.php.

For more information on the SparkFun MIDI breakout shield (BOB-09598), see http:
/www.sparkfun.com/products/9598.

9.7 Making an Audio Synthesizer

Problem

You want to generate complex sounds similar to those used to produce electronic
music.

Solution

The simulation of audio oscillators used in a sound synthesizer is complex, but Tinker
London engineer Peter Knight has created a sketch called Auduino thatenables Arduino
to produce more complex and interesting sounds.

Download the sketch by following the link on http://code.google.com/p/tinkerit/wiki/
Auduino.

314 | Chapter9: Audio Output

http://www.arduino.cc/playground/Main/MIDILibrary
http://www.arduino.cc/playground/Main/MIDILibrary
http://www.midi.org/techspecs/midimessages.php
http://www.midi.org/techspecs/midimessages.php
http://www.sparkfun.com/products/9598
http://www.sparkfun.com/products/9598
http://code.google.com/p/tinkerit/wiki/Auduino
http://code.google.com/p/tinkerit/wiki/Auduino

Connect five 4.7K-ohm linear potentiometers to analog pins 0 through 4, as shown in
Figure 9-6. Potentiometers with full-size shafts are better than small presets because
you can easily twiddle the settings. Pin 5 is used for audio output and is connected to
an amplifier using a jack plug.

EL%QEE QEEQ&E&E
£ DIGITAL ==
—y
Arduino B
Audio
‘ * Jack
)] ANALOG
I,f‘w |'/—\W #Eaggg S ey
L oogogo Er[]
47K
— Variable
- -
"E: -'EE _,:E __:E __EE Resistors

Figure 9-6. Auduino

Discussion

The Sketch code is complex because it is directly manipulating hardware timers to
generate the desired frequencies, which are transformed in software to produce the
audio effects. It is not included in the text because you do not need to understand the
code to use Auduino.

Auduino uses a technique called granular synthesis to generate the sound. It uses two
electronically produced sound sources (called grains). The variable resistors control the
frequency and decay of each grain (inputs 0 and 2 for one grain and inputs 3 and 1 for
the other). Input 4 controls the synchronization between the grains.

If you want to tweak the code, you can change the scale used to calculate the frequency.
The default setting is pentatonic, but you can comment that out and uncomment an-
other option to use a different scale.

Be careful when adding code to the main loop, because the sketch is highly optimized
and additional code could slow things down too much, causing the audio synthesis to
not work well.

9.7 Making an Audio Synthesizer | 315

You can replace any of the pots with sensors that can produce an analog voltage signal
(see Chapter 6). For example, a light dependent resistor (see Recipe 6.2) or a distance
sensor (the analog output described toward the end of Recipe 6.4) connected to one of
the frequency inputs (pin 0 or 3) would enable you to control the pitch by moving your
hand closer to or farther from the sensor (look up “theremin” in Wikipedia or Google
to read more about this musical instrument that is played by sensing hand movement).

See Also
Video demonstration of Auduino: http://www.vimeo.com/2266458

Wikipedia article explaining granular synthesis: http://en.wikipedia.org/wiki/Granular
_synthesis

Wikipedia article on the theremin: http://en.wikipedia.org/wiki/Theremin

316 | Chapter9: Audio Output

http://www.vimeo.com/2266458
http://en.wikipedia.org/wiki/Granular_synthesis
http://en.wikipedia.org/wiki/Granular_synthesis
http://en.wikipedia.org/wiki/Theremin

CHAPTER 10
Remotely Controlling External Devices

10.0 Introduction

The Arduino can interact with almost any device that uses some form of remote control,
including TVs, audio equipment, cameras, garage doors, appliances, and toys. Most
remote controls work by sending digital data from a transmitter to a receiver using
infrared light (IR) or wireless radio technology. Different protocols (signal patterns) are
used to translate key presses into a digital signal, and the recipes in this chapter show
you how to use commonly found remote controls and protocols.

An IR remote works by turning an LED on and off in patterns to produce unique codes.
The codes are typically 12 to 32 bits (pieces of data). Each key on the remote is asso-
ciated with a specific code that is transmitted when the key is pressed. If the key is held
down, the remote usually sends the same code repeatedly, although some remotes (e.g.,
NEC) send a special repeat code when a key is held down. For Philips RC-5 or RC-6
remotes, a bit in the code is toggled each time a key is pressed; the receiver uses this
toggle bit to determine when a key is pressed a second time. You can read more about
the technologies used in IR remote controls at http://www.sbprojects.com/knowledge/
irfir.htm.

The recipes here use a low-cost IR receiver module to detect the signal and provide a
digital output that the Arduino can read. The digital output is then decoded by a library
called IRremote, which was written by Ken Shirriff and can be downloaded from http:
/www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html.

The same library is used in the recipes in which Arduino sends commands to act like
a remote control.

Toinstall the library, place itin the folder named libraries in your Arduino sketch folder.
If you need help installing libraries, see Chapter 16.

Remote controls using wireless radio technology are more difficult to emulate than IR
controls. However, the button contacts on these controls can be activated by Arduino.
The recipes using wireless remotes simulate button presses by closing the button

317

http://www.sbprojects.com/knowledge/ir/ir.htm
http://www.sbprojects.com/knowledge/ir/ir.htm
http://www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
http://www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html

contacts circuit inside the remote control. With wireless remotes, you may need to take
apart the remote control and connect wires from the contacts to Arduino to be able to
use these devices. Components called optocouplers are used to provide electrical sep-
aration between Arduino and the remote control. This isolation prevents voltages from
Arduino from harming the remote control, and vice versa.

Optocouplers (also called optoisolators) enable you to safely control another circuit
that may be operating at different voltage levels from Arduino. As the “isolator” part
of the name implies, optoisolators provide a way to keep things electrically separated.
These devices contain an LED, which can be controlled by an Arduino digital pin. The
light from the LED in the optocoupler shines onto a light-sensitive transistor. Turning
on the LED causes the transistor to conduct, closing the circuit between its two
connections—the equivalent of pressing a switch.

10.1 Responding to an Infrared Remote Control

Problem

You want to respond to any key pressed on a TV or other remote control.

Solution

Arduino responds to IR remote signals using a device called an IR receiver module.
Common devices are the TSOP4838, PNA4602, and TSOP2438. The first two have the
same connections, so the circuit is the same; the TSOP2438 has the +5V and Gnd pins
reversed. Check the data sheet for your device to ensure that you connect it correctly.

This recipe uses the IRremote library from http://www.arcfn.com/2009/08/multi-proto
col-infrared-remote-library.html. Connect the IR receiver module according to your
data sheet. The Arduino wiring in Figure 10-1 is for the TSOP4838/PNA4602 devices.

This sketch will toggle an LED when any button on an infrared remote control is
pressed:
/*
IR_remote_detector sketch

An IR remote receiver is connected to pin 2.
The LED on pin 13 toggles each time a button on the remote is pressed.

*/
#include <IRremote.h> //adds the library code to the sketch
const int irReceiverPin = 2; //pin the receiver is connected to

const int ledPin = 13;

IRrecv irrecv(irReceiverPin); //create an IRrecv object
decode_results decodedSignal; //stores results from IR detector

318 | Chapter10: Remotely Controlling External Devices

http://www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
http://www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html

Check data sheet for your
device to ensure comrect

s9neeses

F:E._\'El @
5V
Gnd
Gnd
vin O

oO=Z2—C O >0 >

+5v and Gnd connections
TSOP4838 TSOP2438
or
PNA4602 O
1 Qutput
1 Qutput 245V
26nd 36nd RN
3 +5v 1 2 3

T[I]CI]D

A
y =l
b =
T
| B
220 ohm

N I:;E__\-ETB Resistor Y=
VR

vin O

Figure 10-1. Connecting an infrared receiver module

void setup()

pinMode(ledPin, OUTPUT);
irrecv.enableIRIn();

}

boolean lightState
unsigned long last
message

false;
millis();

void loop()
{

if (irrecv.decode(&decodedSignal) ==
been received

// Start the receiver object

//keep track of whether the LED is on
//remember when we last received an IR

true) //this is true if a message has

10.1 Responding to an Infrared Remote Control | 319

if (millis() - last > 250) { //has it been 1/4 sec since last message
lightState = !lightState; //toggle the LED
digitalWrite(ledPin, lightState);

last = millis();
irrecv.resume(); // watch out for another message

}
}

Discussion

The IR receiver converts the IR signal to digital pulses. These are a sequence of ones
and zeros that correspond to buttons on the remote. The IRremote library decodes
these pulses and provides a numeric value for each key (the actual values that your
sketch will receive are dependent on the specific remote control you use).

#include <IRremote.h> at the top of the sketch makes the library code available to your
sketch, and the line IRrecv irrecv(irReceiverPin); creates an IRrecv object named
irrecv to receive signals from an IR receiver module connected to irReceiverPin (pin
2 in the sketch). Chapter 16 has more on using libraries.

You use the irrecv object to access the signal from the IR receiver. You can give it
commands to look for and decode signals. The decoded responses provided by the
library are stored in a variable named decode_results. The receiver object is started in
setup with the line irrecv.enableIRIn();. The results are checked in loop by calling the
function irrecv.decode(&decodedSignal).

The decode function returns true if there is data, which will be placed in the decoded
Signal variable. Recipe 2.11 explains how the ampersand symbol is used in function
calls where parameters are modified so that information can be passed back.

If a remote message has been received, the code toggles the LED (flips its state) if it is
more than one-quarter of a second since the last time it was toggled (otherwise, the
LED will get turned on and off quickly by remotes that send codes more than once
when you press the button, and may appear to be flashing randomly).

The decodedSignal variable will contain a value associated with a key. This value is
ignored in this recipe (although it is used in the next recipe)—you can print the value
by adding to the sketch the Serial.println line highlighted in the following code:

if (irrecv.decode(&decodedSignal) == true) //this is true if a message has been

received
Serial.println(results.value); // add this line to see decoded results

The library needs to be told to continue monitoring for signals, and this is achieved
with the line irrecv.resume();.

This sketch flashes an LED when any button on the remote control is pressed, but you
can control other things—for example, you can use a servo motor to dim a lamp (for
more on controlling physical devices, see Chapter 8).

320 | Chapter10: Remotely Controlling External Devices

10.2 Decoding Infrared Remote Control Signals

Problem

You want to detect a specific key pressed on a TV or other remote control.

Solution

This sketch uses remote control key presses to adjust the brightness of an LED. The
code prompts for remote control keys 0 through 4 when the sketch starts. These codes
are stored in Arduino memory (RAM), and the sketch then responds to these keys by
setting the brightness of an LED to correspond with the button pressed, with 0 turning
the LED off and 1 through 4 providing increased brightness:
/*
RemoteDecode sketch
Infrared remote control signals are decoded to control LED brightness
The values for keys 0 through 4 are detected and stored when the sketch starts

key 0 turns the LED off, the brightness increases in steps with keys 1 through 4
*/

t#tinclude <IRremote.h> // IR remote control library

const int irReceivePin = 2; // pin connected to the output of the IR
detector

const int ledPin =9; // LED is connected to a PWM pin

const int numberOfKeys = 5; // 5 keys are learned (0 through 4)
long irKeyCodes[numberOfKeys]; // holds the codes for each key

IRrecv irrecv(irReceivePin); // create the IR library

decode_results results; // IR data goes here

void setup()
{

Serial.begin(9600);
pinMode(irReceivePin, INPUT);
pinMode(ledPin, OUTPUT);

irrecv.enableIRIn(); // Start the IR receiver
learnKeycodes(); // learn remote control key codes
Serial.println("Press a remote key");

}
void loop()
{

long key;
int brightness;

if (irrecv.decode(8results))
// here if data is received

irrecv.resume();
key = convertCodeToKey(results.value);

10.2 Decoding Infrared Remote Control Signals | 321

if(key >= 0)
{

Serial.print("Got key ");

Serial.println(key);

brightness = map(key, 0,numberOfKeys-1, 0, 255);
analogWrite(ledPin, brightness);

}
}

/*
* get remote control codes
*/

void learnKeycodes()

while(irrecv.decode(8&results)) // empty the buffer
irrecv.resume();

Serial.println("Ready to learn remote codes");

long prevValue = -1;

int i=0;

while(i < numberOfKeys)
Serial.print("press remote key ");
Serial.print(i);
while(true)

if(irrecv.decode(8results))

if(results.value != -1 &3 results.value != prevValue)
{

showReceivedData();

irKeyCodes[i] = results.value;

i=1+1;

prevValue = results.value;
irrecv.resume(); // Receive the next value
break;

irrecv.resume(); // Receive the next value
}
}
}

Serial.println("Learning complete");

/*

* converts a remote protocol code to a logical key code (or -1 if no digit
received)

*/

int convertCodeToKey(long code)
for(int i=0; i < numberOfKeys; i++)
if(code == irKeyCodes[i])
{

return i; // found the key so return it

322 | Chapter10: Remotely Controlling External Devices

}

}
return -1;
}
/*
* display the protocol type and value
*/

void showReceivedData()

if (results.decode_type == UNKNOWN)
{

Serial.println("-Could not decode message");
else

if (results.decode type == NEC) {
Serial.print("- decoded NEC: ");

else if (results.decode type == SONY) {
Serial.print("- decoded SONY: ");

else if (results.decode type == RC5) {
Serial.print("- decoded RC5: ");

else if (results.decode type == RC6) {
Serial.print("- decoded RC6: ");

Serial.print("hex value = ");
Serial.println(results.value, HEX);
}
}

Discussion

This solution is based on the IRremote library; see this chapter’s introduction for
details.

The sketch starts the remote control library with the following code:

irrecv.enableIRIn(); // Start the IR receiver

It then calls the learnKeyCodes function to prompt the user to press keys 0 through 4.
The code for each key is stored in an array named irKeyCodes. After all the keys are
detected and stored, the loop code waits for a key press and checks if this was one of
the digits stored in the irKeyCodes array. If so, the value is used to control the brightness
of an LED using analoghirite.

See Recipe 5.7 for more on using the map function and analogWrite to
control the brightness of an LED.

10.2 Decoding Infrared Remote Control Signals | 323

The library should be capable of working with most any IR remote control; it can
discover and remember the timings and repeat the signal on command.

You can permanently store the key code values so that you don’t need to learn them
each time you start the sketch. Replace the declaration of irkKeyCodes with the following
lines to initialize the values for each key. Change the values to coincide with the ones
for your remote (these will be displayed in the Serial Monitor when you press keys in
the learnKeycodes function):
long irKeyCodes[numberOfKeys] = {

0x18E758A7, //0 key

O0x18E708F7, //1 key

0x18E78877, //2 key

0x18E748B7, //3 key

0x18E7C837, //4 key

1

See Also

Recipe 18.1 explains how you can store learned data in EEPROM (nonvolatile
memory).

10.3 Imitating Remote Control Signals

Problem

You want to use Arduino to control a TV or other remotely controlled appliance by
emulating the infrared signal. This is the inverse of Recipe 10.2—it sends commands
instead of receiving them.

Solution

This sketch uses the remote control codes from Recipe 10.2 to control a device. Five
buttons select and send one of five codes. Connect an infrared LED to send the signal
as shown in Figure 10-2:

/*
irSend sketch
this code needs an IR LED connected to pin 3
and 5 switches connected to pins 4 - 8

*/
#include <IRremote.h> // IR remote control library

const int numberOfKeys = 5;

const int firstKey = 4; // the first pin of the 5 sequential pins connected to
buttons

boolean buttonState[numberOfKeys];

boolean lastButtonState[numberOfKeys];

324 | Chapter10: Remotely Controlling External Devices

long irKeyCodes[numberOfKeys] = {
0x18E758A7, //0 key
0x18E708F7, //1 key
0x18E78877, //2 key
0x18E748B7, //3 key
0x18E7C837, //4 key

|5

IRsend irsend;
void setup()

for (int i = 0; i < numberOfKeys; i++){
buttonState[i]=true;
lastButtonState[i]=true;
int physicalPin=i + firstKey;
pinMode(physicalPin, INPUT);
digitalWrite(physicalPin, HIGH); // turn on pull-ups
}
Serial.begin(9600);

void loop() {
for (int keyNumber=0; keyNumber<numberOfKeys; keyNumber++)

int physicalPinToRead=keyNumber+4;
buttonState[keyNumber] = digitalRead(physicalPinToRead);
if (buttonState[keyNumber] != lastButtonState[keyNumber])

if (buttonState[keyNumber] == LOW)

{
irsend.sendSony(irKeyCodes[keyNumber], 32);
Serial.println("Sending");

}
lastButtonState[keyNumber] = buttonState[keyNumber];

You won’t see anything when the codes are sent because the light from
the infrared LED isn’t visible to the naked eye.

10.3 Imitating Remote Control Signals | 325

130
A
g
R éD | —
15 | <
D |
e
U 0
g
vl | b—w g
| 220 ohm
N R Resistor SZ’J"
wild
sv(3
and
0 Gnd [3
vin(Q

Figure 10-2. Buttons and LED for IR sender

Discussion

Here Arduino controls the device by flashing an IR LED to duplicate the signal that
would be sent from your remote control. This requires an IR LED. The specifications
are not critical; see Appendix A for suitable components.

The IR library handles the translation from numeric code to IR LED flashes. You need
to create an object for sending IR messages. The following line creates an IRsend object
that will control the LED on pin 3 (you are not able to specify which pin to use; this is
hardcoded within the library):

IRsend irsend;

The code uses an array (see Recipe 2.4) called irKeyCodes to hold the range of values
that can be sent. It monitors five switches to see which one has been pressed and sends
the relevant code in the following line:

irsend.sendSony(irKeyCodes[keyNumber], 32);

The irSend object has different functions for various popular infrared code formats, so
check the library documentation if you are using one of the other remote control for-

mats. You can use Recipe 10.2 if you want to display the format used in your remote
control.

The sketch passes the code from the array, and the number after it tells the function
how many bits long that number is. The Ox at the beginning of the numbers in the
definition of irKeyCodes at the top of the sketch means the codes are written in hex (see

326 | Chapter10: Remotely Controlling External Devices

Chapter 2 for details about hex numbers). Each character in hex represents a 4-bit value.
The codes here use eight characters, so they are 32 bits long.

The LED is connected with a current limiting resistor (see the Recipe 10.0 section in
Chapter 7).

W
- You can verify that an infrared diode is working with a digital camera—
ﬁ:\ you should be able to see it flashing in the camera’s LCD viewfinder.

If you need to increase the sending range, you can use multiple LEDs or select one with
greater output.

See Also

Chapter 7 provides more information on controlling LEDs.

10.4 Controlling a Digital Camera

Problem

You want Arduino to control a digital camera to take pictures under program control.
You may want to do time lapse photography or take pictures triggered by an event
detected by the Arduino.

Solution

There are a few ways to do this. If your camera has an infrared remote, use Rec-
ipe 10.2 to learn the relevant remote codes and Recipe 10.3 to get Arduino to send those
codes to the camera.

If your camera doesn’t have an infrared remote but does have a socket for a wired
remote, you can use this recipe to control the camera.

,—_ A camera shutter connector, usually called a TRS (tip, ring, sleeve) con-

“5’@ nector, typically comes in 2.5 mm or 3.5 mm sizes, but the length and

shape of the tip may be nonstandard. The safest way to get the correct

plug is to buy a cheap wired remote switch for your model of camera

and modify that or buy an adapter cable from a specialist supplier (Goo-
gle “TRS camera shutter”).

10.4 Controlling a Digital Camera | 327

You connect the Arduino to a suitable cable for your camera using optocouplers, as
shown in Figure 10-3.

This sketch takes a picture every 20 seconds:
/*

camera sketch

takes 20 pictures with a digital camera
using pin 4 to trigger focus

pin 3 to trigger the shutter

*/

int focus = 4; //optocoupler attached to focus

int shutter = 3; //optocoupler attached to shutter
long exposure = 250; //exposure time in milliseconds

long interval = 10000; //time between shots, in milliseconds

void setup()
{

pinMode(focus, OUTPUT);
pinMode(shutter, OUTPUT);

for (int i=0; i<20; i++) //camera will take 20 pictures
{
takePicture(exposure); //takes picture
delay(interval); //wait to take the next picture
}

}

void loop()
{

//once it's taken 20 pictures it is done,
so loop is empty

//but loop still needs to be here or the
sketch won't compile

}

void takePicture(long exposureTime)

{
int wakeup = 10; //camera will take some time to wake up

and focus

//adjust this to suit your camera

digitalWrite(focus, HIGH); //wake the camera and focus
delay(wakeup); //wait for it to wake up and focus
digitalWrite(shutter, HIGH); //open the shutter
delay(exposureTime); //wait for the exposure time
digitalWrite(shutter, LOW); //release shutter
digitalWrite(focus, LOW); //release the focus

}

328 | Chapter10: Remotely Controlling External Devices

OPTOCOUPLERS

— MW —
220 0hm

H Resistor

‘If RE [::::L
pod | Lww—pe R
220 ohm ?Z{,;LK

Resistor

oO=Z—C O X0 =

Gnd
ol psaso1 1

4
*K
Optocoupler 2 y 3

Figure 10-3. Using optocouplers with a TRS camera connector

Discussion

It’s not advisable to connect Arduino pins directly to a camera—the voltages may not
be compatible and you risk damaging your Arduino or your camera. Optocouplers are
used to isolate Arduino from your camera; see the introduction of this chapter for more
about these devices.

You will need to check the user manual for your camera to identify the correct TRS
connector to use.

You may need to change the order of the pins turning on and off in the takePicture
function to get the behavior you want. For a Canon camera to do bulb exposures, you
need to turn on the focus, then open the shutter without releasing the focus, then release
the shutter, and then release the focus (as in the sketch). To take a picture and have the
camera calculate the exposure, press the focus button, release it, and then press the
shutter.

See Also

If you want to control aspects of a camera’s operation, have a look at the Canon Hack
Development Kit at http://chdk.wikia.com/wiki/CHDK.

Also see The Canon Camera Hackers Manual: Teach Your Camera New Tricks by Bert-
hold Daum (Rocky Nook).

It is also possible to control video cameras in a similar fashion using LANC. You can
find details on this by searching for “LANC” in the Arduino Playground.

10.4 Controlling a Digital Camera | 329

http://chdk.wikia.com/wiki/CHDK

10.5 Controlling AC Devices by Hacking a Remote Controlled
Switch

Problem

You want to safely switch AC line currents on and off to control lights and appliances
using a remote controlled switch.

Solution

Arduino can trigger the buttons of a remote controlled switch using an optocoupler.
This may be necessary for remotes that use wireless instead of infrared technology. This
technique can be used for almost any remote control. Hacking a remote is particularly
useful to isolate potentially dangerous AC voltages from you and Arduino because only
the battery operated controller is modified.

Opening the remote control will void the warranty and can potentially
- damage the device. The infrared recipes in this chapter are preferable

because they avoid modifying the remote control.

Open the remote control and connect the optocoupler so that the photo-emitter (pins
1 and 2 in Figure 10-4) is connected to Arduino and the photo-transistor (pins 3 and
4) is connected across the remote control contacts.

REMOTE

ON

i Ll

OPTOCOUPLER

2200hm
Resistor

OFF

e 0ne e

=
=

220 0hm
Resistor

OzZ—CUO=>=>»

Vin
PS2501 u

Photocoupler ##

Figure 10-4. Optocouplers connected to remote control contacts

330 | Chapter10: Remotely Controlling External Devices

This sketch uses a switch connected to Arduino to “push” the remote ON and OFF

buttons:
/*
OptoRemote sketch
A switch connected to pin 2 turns a device on and off using optocouplers
The outputs are pulsed for half a second when the switch is pressed or released
*/
const int inputPin = 2; // input pin for the switch

const int remoteOnPin = 3; // output pin to turn the remote on
const int remoteOffPin = 4; // output pin to turn the remote off
const int PUSHED = LOW; // value when button is pressed
boolean isOn; // variable stores the last command

void setup() {

Serial.begin(9600);

pinMode(remoteOnPin, OUTPUT);

pinMode(remoteOffPin, OUTPUT);

pinMode(inputPin, INPUT);

digitalWrite(inputPin,HIGH); // turn on internal pull-up on the inputPin

}
void loop(){

int val = digitalRead(inputPin); // read input value

// if the switch is pushed then switch on if not already on
if(val == PUSHED)

{
if(isOn != true) // if it's not already on, turn the remote button on
pulseRemote(remoteOnPin);
isOn = true; // remember that the remote is now on
}
// if the switch is not pushed then switch off if not already off
else
// here if the button is not pushed
if(isOn == true) // if it's on, turn the remote button off
pulseRemote(remoteOffPin);
isOn = false; // remember that the remote is now off
}
}

// turn the optocoupler on for half a second to blip the remote control button
void pulseRemote(int pin)

digitalWrite(pin, HIGH); // turn the optocoupler on

delay(500); // wait half a second

digitalwrite(pin, LOW); // turn the optocoupler off
Discussion

Optocouplers are explained in Recipe 10.4, so check that out if you are unfamiliar with
optocouplers.

10.5 Controlling AC Devices by Hacking a Remote Controlled Switch | 331

The switches in most remote controls consist of interleaved bare copper traces with a
conductive button that closes a connection across the traces when pressed. Less com-
mon are controls that contain conventional push switches; these are easier to use as
the legs of the switches provide a convenient connection point.

The original remote button and the optocoupler can be used together—the switching
action will be performed if either method is activated (pressing the button or turning
on the optocoupler).

The transistor in the optocoupler will only allow electricity to flow in one direction, so
if it doesn’t work the first time, try switching the transistor side connections over and
see if that fixes it.

Some remotes have one side of all of the switches connected together (usually to the
ground of that circuit). You can trace the connections on the board to check for this or
use a multimeter to see what the resistance is between the traces on different switches.
If traces have common connections, it is only necessary to connect one wire to each
common group. Fewer traces are easier because connecting the wires can be fiddly if
the remote is small.

The remote control may have multiple contacts corresponding to each button. You
may need more than one optocoupler for each button position to connect the contacts.
Figure 10-5 shows three optocouplers that are controlled from a single Arduino pin.

A REMOTE
OPTOCOUPLERS
R | o
sE 220 ohm ! LI LI—
D ;E Resistor I~
2 ?
I e J\
A\ 220 ohm
| Resistor :’}
N =t
Gsn‘: i T
Gnd 220 ohm |
0 Vi Resistor ::

Figure 10-5. Multiple optocouplers connected to a single remote control button

332 | Chapter10: Remotely Controlling External Devices

CHAPTER 11

Using Displays

11.0 Introduction

Liquid crystal displays (LCDs) offer a convenient and inexpensive way to provide a user
interface for a project. This chapter explains how to connect and use common text and
graphical LCD panels with Arduino. By far the most popular LCD is the text panel
based on the Hitachi HD44780 chip. This displays two or four lines of text, with 16 or
20 characters per line (32- and 40-character versions are available, but usually at much
higher prices). A library for driving text LCD displays is provided with Arduino, and
you can print text on your LCD as easily as on the Serial Monitor (see Chapter 4)
because LCD and serial share the same underlying print functions.

LCDs can do more than display simple text: words can be scrolled or highlighted and
you can display a selection of special symbols and non-English characters.

You can create your own symbols and block graphics with a text LCD, but if you want
fine graphical detail, you need a graphical display. Graphical LCD (GLCD) displays
are available at a small price premium over text displays, and many popular GLCD
panels can display up to eight lines of 20 text characters in addition to graphics.

LCD displays have more wires connecting to Arduino than most other recipes in this
book. Incorrect connections are the major cause of problems with LCDs, so take your
time wiring things up and triple-check that things are connected correctly. An inex-
pensive multimeter capable of measuring voltage and resistance is a big help for veri-
fying that your wiring is correct. It can save you a lot of head scratching if nothing is
being displayed. You don’t need anything fancy, as even the cheapest multimeter will
help you verify that the correct pins are connected and that the voltages are correct.

You can even find a video tutorial and PDF explaining how to use a multimeter at http:
//blog.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html.

For projects that require a bigger display than available in inexpensive LCD panels,
Recipe 11.11 shows how you can use a television as an output device for Arduino.

333

http://blog.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html
http://blog.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html

11.1 Connecting and Using a Text LCD Display

Problem

You have a text LCD based on the industry-standard HD44780 or a compatible con-
troller chip, and you want to display text and numeric values.

Solution

The Arduino software includes the LiquidCrystal library for driving LCD displays based
on the HD44780 chip.

W

Most text LCDs supplied for use with Arduino will be compatible with
the Hitachi HD44780 controller. If you are not sure about your con-
~ st troller, check the data sheet to see if it is a 44780 or compatible.

To get the display working, you need to wire the power, data, and control pins. Connect
the data and status lines to digital output pins, and wire up a contrast potentiometer
and connect the power lines. If your display has a backlight, this needs connecting,
usually through a resistor.

Figure 11-1 shows the most common LCD connections. It’s important to check the
data sheet for your LCD to verify the pin connections. Table 11-1 shows the most
common pin connections, but if your LCD uses different pins, make sure it is compat-
ible with the Hitachi HD44780—this recipe will only work on LCD displays that are
compatible with that chip. The LCD will have 16 pins (or 14 pins if there is no
backlight)—make sure you identify pin 1 on your panel; it may be in a different position
than shown in the figure.

V8
o You may wonder why LCD pins 7 through 10 are not connected. The
"‘:‘ LCD display can be connected using either four pins or eight pins for
T Wy data transfer. This recipe uses the four-pin mode because this frees up
" the other four Arduino pins for other uses. There is a theoretical per-
formance improvement using eight pins, but it’s insignificant and not
worth the loss of four Arduino pins.

334 | Chapter11: Using Displays

Text LCD
123456 11 16
O 0 O A AT
- Bﬁf“?m
/ eﬁsdor
2, ptsn o~
P Backlight — (Gnd)
— Backlight + (5V)
:
So0eve QEIHI,QIIEQQQ_,M&‘IQQQ
EEREES gg=e-® ==
= DIGITALPINS
Arduino

Figure 11-1. Connections for a text LCD
Table 11-1. LCD pin connections

LCDpin Function Arduino pin
1 GndorOVorVss Gnd
2 +5VorVdd 5V
3 Vo or contrast

4 RS 12
5 RIW

6 E n
7 DO

8 D1

9 D2

10 D3

1 D4 5
12 D5 4
13 D6 3
14 D7 2
15 Aor analog

16 Kor cathode

11.1 Connecting and Using a Text LCD Display | 335

You will need to connect a 10K potentiometer to provide the contrast voltage to LCD
pin 3. Without the correct voltage on this pin, you may not see anything displayed. In
Figure 11-1, one side of the pot connects to Gnd (ground), the other side connects to
Arduino +5V, and the center of the pot goes to LCD pin 3. The LCD is powered by
connecting Gnd and +5V from Arduino to LCD pins 1 and 2.

Many LCD panels have an internal lamp called a backlight to illuminate the display.
Your data sheet should indicate whether there is a backlight and if it requires an external
resistor—many do need this to prevent burning out the backlight LED assembly (if you
are not sure you can be safe by using a 220 ohm resistor). The backlight is polarized,
so make sure pin 15 is connected to +5V and pin 16 to Gnd. (The resistor is shown
connected between pin 16 and Gnd, but it can also be connected between pin 15 and
+5V.)

Double-check the wiring before you apply power, as you can damage the LCD if you
connect the power pins incorrectly. To run the HelloWorld sketch provided with
Arduino, click the IDE Files menu item and navigate to Exam-
ples—Library-LiquidCrystal-HelloWorld.

The following code is modified slightly to print numbers in addition to “hello world”.
Change numRows and numCols to match the rows and columns in your LCD:

/*
LiquidCrystal Library - Hello World

Demonstrates the use of a 16 x 2 LCD display.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
*/

#include <LiquidCrystal.h> // include the library code
//constants for the number of rows and columns in the LCD

const int numRows = 2;
const int numCols = 16;

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

lcd.begin(numCols, numRows);
lcd.print("hello, world!"); // Print a message to the LCD.

}

void loop()

// set the cursor to column 0, line 1

// (note: line 1 is the second row, since counting begins with 0):
lcd.setCursor(0, 1);

// print the number of seconds since reset:

336 | Chapter11: Using Displays

lcd.print(millis()/1000);

Run the sketch; you should see “hello world” displayed on the first line of your LCD.
The second line will display a number that increases by one every second.

Discussion

If you don’t see any text and you have double-checked that all wires are connected
correctly, you may need to adjust the contrast pot. With the pot shaft rotated to one
side (usually the side connected to Gnd), you will have maximum contrast and should
see blocks appear in all the character positions. With the pot rotated to the other ex-
treme, you probably won’t see anything at all. The correct setting will depend on many
factors, including viewing angle and temperature—turn the pot until you get the best-
looking display.

If you can’t see blocks of pixels appear at any setting of the pot, check that the LCD is
being driven on the correct pins.

Once you can see text on the screen, using the LCD in a sketch is easy. You use similar
print commands to those for serial printing, covered in Chapter 4. The next recipe
reviews the print commands and explains how to control text position.

See Also
LiquidCrystal reference: hitp://arduino.cc/en/Reference/LiquidCrystalPrint
See Chapter 4 for details on print commands.

The data sheet for the Hitachi HD44780 LCD controller is the definitive reference for
detailed, low-level functionality. The Arduino library insulates you from most of the
complexity, but if you want to read about the raw capabilities of the chip, you can
download the data sheet from http://www.sparkfun.com/datasheets/LCD/HD44780

.pdf.
The LCD page in the Arduino Playground contains software and hardware tips and
links: http://www.arduino.cc/playground/Code/LCD.

11.2 Formatting Text

Problem

You want to control the position of text displayed on the LCD screen; for example, to
display values in specific positions.

11.2 Formatting Text | 337

http://arduino.cc/en/Reference/LiquidCrystalPrint
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://www.arduino.cc/playground/Code/LCD

Solution

This sketch displays a countdown from 9 to 0. It then displays a sequence of digits in
three columns of four characters. Change numRows and numCols to match the rows and
columns in your LCD:
/*
LiquidCrystal Library - FormatText
*

#include <LiquidCrystal.h> // include the library code:

//constants for the number of rows and columns in the LCD
const int numRows = 2;
const int numCols = 16;

int count;

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

lcd.begin(numCols, numRows);
led.print("Starting in "); // this string is 12 characters long
for(int i=9; i > 0; i--) // count down from 9

// the top line is row 0

lcd.setCursor(12,0); // move the cursor to the end of the string
printed above

lcd.print(i);

delay(1000);
}
void loop()
{ int columnWidth = 4; //spacing for the columns
int displayColumns = 3; //how many columns of numbers

lcd.clear();
for(int col=0; col < displayColumns; col++)

lcd.setCursor(col * columnWidth, 0);
count = count+ 1;
lcd.print(count);

}
delay(1000);

338 | Chapter11: Using Displays

Discussion

The lcd.print functions are similar to Serial.print. In addition, the LCD library has
commands that control the cursor location (the row and column where text will be
printed).

The lcd.print statement displays each new character after the previous one. Text prin-
ted beyond the end of a line may not be displayed or may be displayed on another line.
The lcd.setCursor() command enables you to specify where the next led.print will
start. You specify the column and row position (the top-left corner is 0,0). Once the
cursor is positioned, the next led. print will start from that point, and it will overwrite
existing text. The sketch in this recipe’s Solution uses this to print numbers in fixed
locations.

For example, in setup:
lcd.setCursor(12,0); // move the cursor to the 13th position
lcd.print(i);

lcd.setCursor(12,0) ensures that each number is printed in the same position, the
thirteenth column, first row, producing the digit shown at a fixed position, rather than
each number being displayed after the previous number.

W

Rows and columns start from zero, so setCursor(4,0) would set the
cursor to the fifth column on the first row. This is because there are five
Wis: characters located in positions 0 through 4. If that is not clear, it may
help you if you count this out on your fingers starting from zero.

The following lines use setCursor to space out the start of each column to provide
columnwidth spaces from the start of the previous column:

lcd.setCursor(col * columnWidth, 0);
count = count+ 1;

lcd.print(count);

lcd.clear();

lcd.clear clears the screen and moves the cursor back to the top-left corner.

Here is a variation on loop that displays numbers using all the rows of your LCD.
Replace your loop code with the following (make sure you set numRows and numCols at
the top of the sketch to match the rows and columns in your LCD):

void loop()
{

int columnWidth = 4;
int displayColumns = 3;

lcd.clear();
for(int row=0; row < numRows; row++)

for(int col=0; col < displayColumns; col++)

11.2 Formatting Text | 339

lcd.setCursor(col * columnWidth, row);
count = count+ 1;
lcd.print(count);

delay(1000);

The first for loop steps through the available rows, and the second for loop steps
through the columns.

To adjust how many numbers are displayed in a row to fit the LCD, calculate the
displayColumns value rather than setting it. Change:

int displayColumns = 3;

to:

int displayColumns = numCols / columnWidth;

See Also

The LiquidCrystal library tutorial: http://arduino.cc/en/Reference/LiquidCrystal?from=
Tutorial. LCDLibrary

11.3 Turning the Cursor and Display On or Off

Problem

You want to blink the cursor and turn the display on or off. You may also want to draw
attention to a specific area of the display.

Solution

This sketch shows how you can cause the cursor (a flashing block at the position where
the next character will be displayed) to blink. It also illustrates how to turn the display
on and off; for example, to draw attention by blinking the entire display:
/*
blink
*/

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
{

// set up the LCD's number of columns and rows and:
lcd.begin(16, 2);

340 | Chapter11: Using Displays

http://arduino.cc/en/Reference/LiquidCrystal?from=Tutorial.LCDLibrary
http://arduino.cc/en/Reference/LiquidCrystal?from=Tutorial.LCDLibrary

// Print a message to the LCD.
lcd.print("hello, world!");

}

void loop()
lcd.setCursor(0, 1);

lcd.print("cursor blink");
lcd.blink();
delay(2000);

lcd.noBlink();
lcd.print(" noBlink");
delay(2000);

lcd.clear();

lcd.print("Display off ...");

delay(1000);

lcd.noDisplay();

delay(2000);

lcd.display(); // turn the display back on

lcd.setCursor(0, 0);

lcd.print(" display flash !");

displayBlink(2, 250); // blink twice

displayBlink(2, 500); // and again for twice as long

lcd.clear();
}

void displayBlink(int blinks, int duration)
while(blinks--)

lcd.noDisplay();

delay(duration);
lcd.display();
delay(duration);
}
Discussion

The sketch calls blink and noBlink functions to toggle cursor blinking on and off.

The code to blink the entire display is in a function named displayBlink that makes
the display flash a specified number of times. The function uses lcd.display() and
lcd.noDisplay() to turn the display text on and off (without clearing it from the screen’s
internal memory).

11.3 Turning the Cursor and Display On or Off | 341

11.4 Scrolling Text

Problem

You want to scroll text; for example, to create a marquee that displays more characters
than can fit on one line of the LCD display.

Solution
This sketch demonstrates both lcd.ScrollDisplaylLeft and lcd.ScrollDisplayRight.

It scrolls a line of text to the left when tilted and to the right when not tilted. Connect
one side of a tilt sensor to pin 7 and the other pin to Gnd (see Recipe 6.1 if you are not
familiar with tilt sensors):

/*
Scroll
* this sketch scrolls text left when tilted

* text scrolls right when not tilted.
*/

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int numRows = 2;

const int numCols = 16;

const int tiltPin = 7; // pin connected to tilt sensor

const char textString[] = "tilt to scroll";
const int textlen = sizeof(textString) -1; // the number of characters
boolean isTilted = false;

void setup()

{
// set up the LCD's number of columns and rows:
lcd.begin(numCols, numRows);

digitalWrite(tiltPin, HIGH); // turn on pull-ups for the tilt sensor
lcd.print(textString);

void loop()
if(digitalRead(tiltPin) == LOW && isTilted == false)
// here if tilted left so scroll text left
isTilted = true;

for (int position = 0; position < textlen; position++)

lcd.scrollDisplayleft();
delay(150);

342 | Chapter11: Using Displays

}
if(digitalRead(tiltPin) == HICH && isTilted == true)

// here if previously tilted but now flat, so scroll text right
isTilted = false;
for (int position = 0; position < textlen; position++)

lcd.scrollDisplayRight();
delay(150);

}
}

Discussion

The first half of the loop code handles the change from not tilted to tilted. The code
checks to see if the tilt switch is closed (LOW) or open (HIGH). If it’s LOW and the current
state (stored in the isTilted variable) is not tilted, the text is scrolled left. The delay in
the for loop controls the speed of the scroll; adjust the delay if the text moves too fast
or too slow.

The second half of the code uses similar logic to handle the change from tilted to not
tilted.

A scrolling capability is particularly useful when you need to display more text than
can fit on an LCD line.

This sketch has a marquee function that will scroll text up to 32 characters in length:
/*
Marquee
* this sketch scrolls a long line of text

*/
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int numRows = 2;

const int numCols = 16;

void setup()

// set up the LCD's number of columns and rows:
lcd.begin(numCols, numRows);

void loop()
{

marquee("A message too long to fit !");
delay(1000);
lcd.clear();

}

11.4 Scrolling Text | 343

// this function uses scrolling to display a message up to 32 bytes long
void marquee(char *text)

int length = strlen(text); // the number of characters in the text
if(length < numCols)
lcd.print(text);
else
{
int pos;
for(pos = 0; pos < numCols; pos++)
lcd.print(text[pos]);
delay(1000); // allow time to read the first line before scrolling
while(pos < length)
{

lcd.scrollDisplayleft();
lcd.print(text[pos]);
pos = pos + 1;
delay(300);

}
}

The sketch uses the 1cd. scrollDisplayLeft function to scroll the display when the text
is longer than the width of the screen.

The LCD chip has internal memory that stores the text. This memory is limited (32
bytes on most four-line displays). If you try to use longer messages, they may start to
wrap over themselves. If you want to scroll longer messages (e.g., a tweet), or control
scrolling more precisely, you need a different technique. The following function stores
the text in RAM on Arduino and sends sections to the screen to create the scrolling
effect. These messages can be any length that can fit into Arduino memory:

// this version of marquee uses manual scrolling for very long messages
void marquee(char *text)

int length = strlen(text); // the number of characters in the text
if(length < numCols)
lcd.print(text);
else
{
int pos;
for(pos = 0; pos < numCols; pos++)
lcd.print(text[pos]);
delay(1000); // allow time to read the first line before scrolling
while(pos <= length - numCols)

lcd.setCursor(0,0);

for(int i=0; i < numCols; i++)
lcd.print(text[pos+i]);

delay(300);

pos = pos + 1;

344 | Chapter11: Using Displays

11.5 Displaying Special Symbols

Problem

You want to display special symbols: ° (degrees), ¢, +, 7 (pi), or any other symbol stored
in the LCD character memory.

Solution

Identify the character code you want to display by locating the symbol in the character
pattern table in the LCD data sheet. This sketch prints some common symbols in
setup. It then shows all displayable symbols in loop:
/*
LiquidCrystal Library - Special Chars
*/

#include <LiquidCrystal.h>
//set constants for number of rows and columns to match your LCD

const int numRows = 2;
const int numCols = 16;

// defines for some useful symbols

const byte degreeSymbol = B11011111;

const byte piSymbol = B11110111;

const byte centsSymbol = B11101100;

const byte sqrtSymbol = B11101000;

const byte omegaSymbol = B11110100; // the symbol used for ohms

byte charCode = 32; // the first printable ascii character
int col;
int row;

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()
{
lcd.begin(numRows, numCols);

showSymbol (degreeSymbol, "degrees");
showSymbol (piSymbol, "pi");
showSymbol (centsSymbol, "cents");
showSymbol(sqrtSymbol, "sqrt");
showSymbol (omegaSymbol, "ohms");
lcd.clear();

11.5 Displaying Special Symbols | 345

void loop()

lcd.print(charCode);

calculatePosition();
if(charCode == 255)
{

// finished all characters so wait another few seconds and start over
delay(2000);

lcd.clear();

row = col = 0;

charCode = 32;

charCode = charCode + 1;

}

void calculatePosition()
{
col = col + 1;
if(col == numCols)
{
col = 0;
row = row + 1;
if(row == numRows)

{

ToW = 0;
delay(2000); // pause
lcd.clear();

}

lcd.setCursor(col, row);

}
}

// function to display a symbol and its description
void showSymbol(byte symbol, char * description)

lcd.clear();
lcd.print(symbol);
lcd.print(" '); // add a space before the description
lcd.print(description);
delay(3000);
}

Discussion

A table showing the available character patterns is in the data sheet for the LCD con-
troller chip (you can find it on page 17 of the data sheet at http://www.sparkfun.com/
datasheets/LCD/HD44780.pdf).

To use the table, locate the symbol you want to display. The code for that character is
determined by combining the binary values for the column and row for the desired
symbol (see Figure 11-2).

346 | Chapter11: Using Displays

http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Character Pattern Codes from Datasheet Upper 4bits

Dinper 4
Laisi =ts| 000D | DOO1 | 0040

w0000 q:J}SI E EI F' - F. - .g E. ll-.': Fl
wenr [@] | o | 1 [H|A 2 o | FFG Ay
w1110 | (7) u } H - n + a E m ~ r:l

wooettit] (8) -l"',.F ? I:I — l:' * Iu l._-l '_l:l ° IEI [

Lower 4 bits Degree Symbol

Figure 11-2. Using data sheet to derive character codes

For example, the degree symbol, °, is the third-from-last entry at the bottom row of the
table shown in Figure 11-2. Its column indicates the upper four bits are 1101 and its
row indicates the lower four bits are 1111. Combining these gives the code for this
symbol: B11011111. You can use this binary value or convert this to its hex value
(0xDF) or decimal value (223). Note that Figure 11-2 shows only 4 of the 16 actual
rows in the data sheet.

The LCD screen can also show any of the displayable ASCII characters by using the
ASCII value in lcd.print.

The sketch uses a function named showSymbol to print the symbol and its description:

void showSymbol(byte symbol, char * description)
(See Recipe 2.6 if you need a refresher on using character strings and passing them to
functions.)
See Also

Data sheet for Hitachi HD44780 display: hitp://www.sparkfun.com/datasheets/L.CD/
HD44780.pdf

11.6 Creating Custom Characters

Problem

You want to define and display characters or symbols (glyphs) that you have created.
The symbols you want are not predefined in the LCD character memory.

11.6 Creating Custom Characters | 347

http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Solution

Uploading the following code will create an animation of a face, switching between
smiling and frowning:

/*
custom_char sketch
creates an animated face using custom characters

*/

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

byte happy[8] =
{

B00000,
B10001,
B00000,
B00000,
B10001,
B01110,
B00000,
B00000

};
byte saddy[8] =

B00000,
B10001,
B00000,
B00000,
B01110,
B10001,
B00000,
B00000

};

void setup() {
lcd.createChar(0, happy);
lcd.createChar(1, saddy);
lcd.begin(16, 2);

}

void loop() {
for (int i=0; i<2; i++)

lcd.setCursor(0,0);
lcd.write(i);
delay(500);

348 | Chapter11: Using Displays

Discussion

The LiquidCrystal library enables you to create up to eight custom characters, which
can be printed as character codes O through 8. Each character on the screen is drawn
on a grid of 5 x 8 pixels. To define a character, you need to create an array of eight
bytes. Each byte defines one of the rows in the character. When written as a binary
number, the 1 indicates a pixel is on, 0 is off (any values after the fifth bit are ignored).
The sketch example creates two characters, named happy and saddy (see Figure 11-3).

B00000 B0000O
B10001 N H B H B10001
B00000 B0000O
B00000 B0000O
g10001 —> | HEE
BO1110 L L n | B10001
B00000 B0000O
B00000 B0000O

happy saddy

Figure 11-3. Defining custom characters

The following line in setup creates the character using data defined in the happy array
that is assigned to character 0:

lcd.createChar(0, happy);

To print the custom character to the screen you would use this line:
lcd.write(0);

LA
- Note the difference between writing a character with or without an
"‘:‘ . apostrophe. The following will print a zero, not the happy symbol:

)

led.write('0'); // this prints a zero

Code in the for loop switches between character 0 and character 1 to produce an
animation.

11.7 Displaying Symbols Larger Than a Single Character

Problem

You want to combine two or more custom characters to print symbols larger than a
single character; for example, double-height numbers on the screen.

11.7 Displaying Symbols Larger Than a Single Character | 349

Solution

The following sketch writes double-height numbers using custom characters:
/*

* customChars

*

* This sketch displays double-height digits

* the bigDigit arrays were inspired by Arduino forum member dcb

*/
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

byte glyphs[5][8] = {
{ B11111,B11111,B00000,B00000,B00000,B00000,B00000,B0O0000
{ B00000,B00000,B00000,B00000,B00000,B00000,B11111,B11111
{ B11111,B11111,B00000,B00000,B00000,B00000,B11111,B11111
{ B11111,B11111,B11111,B11111,B11111,B11111,B11111,B11111
{ B00000,B00000,B00000,B00000,B00000,B01110,B01110,B01110

e o o o

“e v e .
-

const int digitWidth = 3; // the width in characters of a big digit (excludes
space between characters)
//arrays to index into custom characters that will comprise the big numbers

// digits 0 - 4 0 1 2 3 4
const char bigDigitsTop[10][digitWidth]={ 3,0,3, 0,3,32, 2,2,3, 0,2,3, 3,1,3,
// digits 5-9 5 6 7 8 9

3,2,2, 3,2,2, 0,0,3, 3,2,3, 3,2,3};

const char bigDigitsBot[10][digitWidth]={ 3,1,3, 1,3,1, 3,1,1, 1,1,3, 32,32,3,
1,1,3, 3,1,3, 32,32,3, 3,1,3, 1,1,3};

char buffer[12]; // used to convert a number into a string
void setup ()

lcd.begin(20,4);

// create the custom glyphs

for(int i=0; i < 5; i++)

lcd.createChar(i, glyphs[i]); // create the 5 custom glyphs

// show a countdown timer
for(int digit = 9; digit >= 0; digit--)

showDigit(digit, 2); // show the digit
delay(1000);

}
lcd.clear();

350 | Chapter11: Using Displays

void loop ()

// now show the number of seconds since the sketch started
int number = millis() / 1000;

showNumber (number, 0);

delay(1000);

void showDigit(int digit, int position)

lcd.setCursor(position * (digitwidth + 1), 0);
for(int i=0; i < digitWidth; i++)
lcd.print(bigDigitsTop[digit][i]);
lcd.setCursor(position * (digitWidth + 1), 1);
for(int i=0; i < digitWidth; i++)
lcd.print(bigDigitsBot[digit][i]);

void showNumber(int value, int position)
int index; // index to the digit being printed, 0 is the leftmost digit

itoa(value, buffer, 10); // see Recipe 2.8 for more on using itoa
// dislay each digit in sequence
for(index = 0; index < 10; index++) // display up to ten digits

{
char ¢ = buffer[index];
if(¢ == 0) // check for null (not the same as '0')
return; // the end of string character is a null, see Chapter 2
c = c - 48; // convert ascii value to a numeric value (see Recipe 2.9)
showDigit(c, position + index);

}

Discussion

The LCD display has fixed-size characters, but you can create larger symbols by com-
bining characters. This recipe creates five custom characters using the technique de-
scribed in Recipe 11.6. These symbols (see Figure 11-4) can be combined to create
double-sized digits (see Figure 11-5). The sketch displays a countdown from 9 to 0 on
the LCD using the big digits. It then displays the number of seconds since the sketch
started.

The glyphs array defines pixels for the five custom characters. The array has two di-
mensions given in the square brackets:

byte glyphs[5][8] = {

[5] is the number of glyphs and [8] is the number of rows in each glyph. Each element
contains 1s and Os to indicate whether a pixel is on or off in that row. If you compare

11.7 Displaying Symbols Larger Than a Single Character | 351

EEEEN
AEEEE
0 1

Figure 11-4. Custom characters used to form big digits

Figure 11-5. Ten big digits composed of custom glyphs

the values in glyph[o0] (the first glyph) with Figure 11-2, you can see that the 1s corre-
spond to dark pixels:

{ B11111,B11111,B00000,B00000,B00000, 800000, B00000,B00000 } ,
Each big number is built from six of these glyphs, three forming the upper half of the

big digit and three forming the lower half. bigDigitsTop and bigDigitsBot are arrays
defining which custom glyph is used for the top and bottom rows on the LCD screen.

See Also

See Chapter 7 for information on 7-segment LED displays if you need really big nu-
merals. Note that 7-segment displays can give you digit sizes from one-half inch to two
inches or more. They can use much more power than LCD displays and don’t present
letters and symbols very well, but they are a good choice if you need something big.

11.8 Displaying Pixels Smaller Than a Single Character

Problem

You want to display information with finer resolution than an individual character; for
example, to display a bar chart.

352 | Chapter11: Using Displays

Solution

Recipe 11.7 describes how to build big symbols composed of more than one character.
This recipe uses custom characters to do the opposite; it creates eight small symbols,
each a single pixel higher than the previous one (see Figure 11-6).

These symbols are used to draw bar charts, as shown in the sketch that follows:

/*
* customCharPixels

*/

Figure 11-6. Eight custom characters used to form vertical bars

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

//set constants for number of rows and columns to match your LCD
const int numRows = 2;
const int numCols = 16;

// array of bits defining pixels for 8 custom characters
// ones and zeros indicate if a pixel is on or off

byte glyphs[8][8] = {
{B00000,B00000,B00000,B00000,B00000,B00000,B00000,B11111}, // O
{B00000,B00000,B00000,B00000,B00000,B00000,B11111,B11111}, // 1
{B00000,B00000,B00000,B00000,B00000,B11111,B11111,B11111}, // 2
{B00000,B00000,B00000,B00000,B11111,B11111,B11111,B11111}, // 3
{B00000,B00000,B00000,B11111,B11111,B11111,B11111,B11111}, // 4
{B00000,B00000,B11111,B11111,B11111,B11111,B11111,B11111}, // 5
{B00000,B11111,B11111,B11111,B11111,B11111,B11111,B11111}, // 6
{B11111,B11111,B11111,B11111,B11111,B11111,B11111,B11111}}; // 7

void setup ()
{

lcd.begin(numCols, numRows);
for(int i=0; i < 8; i++)
lcd.createChar(i, glyphs[il); // create the custom glyphs
lcd.clear();
}

11.8 Displaying Pixels Smaller Than a Single Character | 353

void loop ()

for(byte i=0; i < 8; i++)
led.print(i); // show all eight single height bars
delay(2000);
lcd.clear();
}

Discussion

The sketch creates eight characters, each a single pixel higher than the previous one;
see Figure 11-6. These are displayed in sequence on the top row of the LCD. These
“bar chart” characters can be used to display values in your sketch that can be mapped
to a range from 0 to 7. For example, the following will display a value read from analog
input 0:

int value = analogRead(0);

byte glyph = map(value, 0, 1023,0,8);// returns a proportional value

from 0 through 7

lcd.print(glyph);
You can stack the bars for greater resolution. The doubleHeightBars function shown in
the following code displays a value from 0 to 15 with a resolution of 16 pixels, using
two lines of the display:

void doubleHeightBars(int value, int column)

{
char upperGlyph;
char lowerGlyph;

if(value < 8)

upperGlyph = ' '; // no pixels lit
lowerGlyph = value;

else

{
upperGlyph = value - 8;

lowerGlyph = 7; // all pixels 1lit

lcd.setCursor(column, 0); // do the upper half
lcd.print(upperGlyph);

lcd.setCursor(column, 1); // now to the lower half
lcd.print(lowerGlyph);

}
The doubleHeightBars function can be used as follows to display the value of an analog
input:

for(int i=0; i < 16; i++)

{

354 | Chapter11: Using Displays

int value = analogRead(0);

value = map(value, 0, 1023,0,16);
doubleHeightBars(value, i); // show a value from 0 to 15
delay(1000); // one second interval between readings

}

If you want horizontal bars, you can define five characters, each a single pixel wider
than the previous one, and use similar logic to the vertical bars to calculate the character
to show.

A more complex example of this technique can be found in a sketch implementing the
well-known computer simulation known as John Conway’s Game of Life. The sketch
can be downloaded from this book’s website.

11.9 Connecting and Using a Graphical LCD Display

Problem

You want to display graphics and text on an LCD that uses the KS0108 or compatible
LCD driver chip.

Solution

This Solution uses the Arduino GLCD library to control the display. You can download
it from http://'www.arduino.cc/playground/Code/GLCDks0108 (see Chapter 16 if you
need help installing libraries).

W
- There are many different types of GLCD controllers, so check that yours
L) is a KS0108 or compatible.
N ™
15)

The pin connections for GLCD displays are not standardized, and it is important to
check the data sheet for your panel to confirm how it should be wired. Incorrect con-
nections of the signal lines are the most common cause of problems, and particular care
should be taken with the power leads, as wiring these incorrectly can destroy a panel.

Most GLCD parnels require an external variable resistor to set the LCD working voltage
(contrast) and may require a fixed resistor to limit the current in the backlight. The
data sheet for your panel should provide specific information on the wiring and choice
of components for this.

11.9 Connecting and Using a Graphical LCD Display | 355

http://oreilly.com/catalog/9780596802486/
http://www.arduino.cc/playground/Code/GLCDks0108

Table 11-2 indicates the default connections from a KS0108 panel to an Arduino (or
Mega). You will need to check the documentation for your particular panel to find
where each function is connected on your display. The table shows the three most
common panel layouts: the first, labeled “Panel A” in the table, is the one illustrated
in Figure 11-7. The documentation with the GLCD library download includes color
wiring diagrams for the more common displays.

Table 11-2. Default connections from a KS0108 panel to an Arduino or Mega

Arduinopins Megapins GLCDfunction PanelA PanelB PanelC Comments

5v 5v +5 volts 1 2 13

Gnd Gnd Gnd 2 1 14

N/A N/A Contrastin 3 3 12 Wiper of contrast pot
8 22 Do 4 7 1

9 23 D1 5 8 2

10 24 D2 6 9 3

n 25 D3 7 10 4

4 26 D4 8 n 5

5 27 D5 9 12 6

6 28 D6 10 13 7

7 29 D7 1 14 8

14 (analog0) 33 CSEL1 12 15 15 Chip 1 select
15(analog1) 34 (SEL2 13 16 16 Chip 2 select

Reset Reset 14 17 18 Connect to reset

16 (analog2) 35 R_W 15 5 10 Read/write

17 (analog3) 36 D_I 16 4 N Data/instruction (RS)
18 (analog4) 37 EN 17 6 9 Enable

N/A N/A Contrast out 18 18 17 10K or 20K preset
N/A N/A Backlight +5 19 19 19 See data sheet

Gnd Gnd BacklightGnd 20 20 20 See data sheet

The numbers under the Arduino and Mega columns are the Arduino (or Mega) pins
used in the configuration file provided in the library. It is possible to use other pins if
these pins conflict with something else you want to connect. If you do change the
connections, you will also need to change the pin assignments in the configuration file
and should study the library documentation to learn how to edit the configuration file.

356 | Chapter11: Using Displays

Arduino

= 3 =
" e P — O D A =" e
g E EEEE mERm o =
= - = = Tmmm mmm o vien | =
~ TRFF)
fp 71 L1T4 | 111 f
220 Bg(kﬁghf
10k esistor
Contrast —ifNeeded)
Pot ohm
00 oooomm [Uvvveeeel ﬁtllig ': - [(G':;)
B e == DIGITAL e ANALOG 4

Figure 11-7. GLCD wiring for type “A” panels; check your data sheet for pinout

W N

in this recipe enables you to
W5 modify the configuration. A

Wiring the panel using the default configuration and running the sketch

test that everything is working before you
configuration that does not match the wir-

" ing is the most common source of problems, so testing with minimal
changes makes it more likely that things will work the first time.

The following sketch prints some text

/*
glcd
*/

#include <glcd.h>

#include "fonts/allFonts.h"
available to your sketch

int count = 0;
void setup()

GLCD.Init(NON_INVERTED);
GLCD.ClearScreen();
GLCD.SelectFont(System5x7);
GLCD.print("hello world");
delay(3000);

and then draws some graphical objects:

// this makes all the distributed fonts

// initialize the library

// select fixed width system font
// print a message

11.9 Connecting and Using a Graphical LCD Display | 357

void loop()

GLCD.ClearScreen();

GLCD.DrawRect(0, 0, 64, 61, BLACK); // rectangle in left side of screen
// rounded rectangle around text area

GLCD.DrawRoundRect (68, 0, 58, 61, 5, BLACK);

for(int i=0; i < 62; i += 4)

// draw lines from upper left down right side of rectangle
GLCD.DrawLine(1,1,63,i, BLACK);

GLCD.DrawCircle(32,31,30,BLACK); // circle centered on left side of screen
GLCD.FillRect(92,40,16,16, WHITE); // clear previous spinner position

GLCD.CursorTo(5,5); // locate cursor for printing text
GLCD.PrintNumber (count); // print a number at current cursor position
count = count + 1;
delay(1000);
}
Discussion

The library provides a wide range of basic high-level graphical drawing functions, some
of which are demonstrated in this sketch. All the functions are described in the docu-
mentation provided with the library.

Graphic and text screen coordinates start at 0,0 in the top-lefthand corner. Most pop-
ular GLCD panels are 128 x 64 pixels, and the library uses this resolution by default.
If your screen is a different resolution, you will need to edit the configuration file in the
library to match your panel (up to 255 x 255 pixel panels are currently supported).

GLCD enables printing text to the screen using statements similar to Arduino print
commands used for printing to the serial port. In addition, you can specify the type and
size of font. You can also specify an area of the screen that can be used as a text window.
This enables you to define an area on the screen and then send text to that area, pro-
viding you with a “virtual terminal” that will contain and scroll text within the bounds
you define. For instance, the following code creates an area 32 pixels square in the
center of the screen:

gText myTextArea = gText(GLCD.CenterX-16, GLCD.CenterY -16, GLCD.CenterX +16,
GLCD.CenterY+16);

You can select a font and print to the text area using code such as the following;:

myTextArea.SelectFont(System5x7); // select the system font for the text area
name textTop
myTextArea.println("Go"); // print a line of text to the text area.

The example sketch supplied with the library download has a demo that shows how
multiple text areas can be used along with graphical drawings.

358 | Chapter11: Using Displays

These graphical displays have many more connections than the text LCD displays, and
care should be taken to ensure that your panel is connected correctly.

If there are no pixels visible on the display, or the pixels are garbled, do the following:

* Check +5V and Gnd connections between Arduino and the GLCD panel.

* Check that all data and command pins are wired according to the data sheet and
match the configuration settings. This is the most common cure for this problem.

* Check the data sheet for your panel to verify that appropriate timing values are set
in the configuration file.

* Check the contrast voltage (typically between -3 and -4 volts) on the contrast-in
pin of the LCD panel. While the sketch is operating, try gradually adjusting the
pot through its range. Some displays are very sensitive to this setting.

* Check that the sketch has compiled correctly and has downloaded to Arduino.

* Run the GLCDdiags test sketch. The test sketch is available from the menu
Examples—»GLCD-GLCDdiags.

If the left and right sides of the image are reversed, swap the CSEL1 and CSEL2 wires
(you can also swap pin assignments in the configuration file).

11.10 Creating Bitmaps for Use with a Graphical Display

Problem

You want to create and use your own graphical images (bitmaps) with the GLCD dis-
play discussed in Recipe 11.9. You want the font definition and text stored in program
memory to minimize RAM usage.

Solution

You can use bitmaps distributed with the library or create your own. Bitmaps are de-
fined in header files with an extension of .h; for example, an Arduino icon image
named Arduinilcon.h is stored in the bitmap folder of the GLCD library directory. This
folder also contains a file named allBitmaps.h that has details of all the distributed
bitmaps, so you can include this to make all the supplied (or newly created) bitmaps
available:

#include "bitmaps/allBitmaps.h" // this line includes all distributed bitmaps

Note that including all the bitmaps will not consume any memory if they are not ex-
plicitly referenced in your sketch with the DrawBitmap function.

To enable you to add your own bitmaps, the GLCD library includes a utility called
glcdMakeBitmap which converts a .gif, .jpg, .bmp, .tga, or .png file to a header file that
can be used by the GLCD library. The file glcdMakeBitmap.pde is a Processing sketch
that can be run using the Processing environment. The sketch is located in the bitmaps/

11.10 Creating Bitmaps for Use with a Graphical Display | 359

utils/glcdMakeBitmap directory. For more information on Processing, see http://process
ing.org/.

There is also a .java (Java) runtime file (glcdMakeBitmap.jar) and a .java (Java) source
(glcdMakeBitmap.java) in the bitmaps/utils/Java directory.

Run the utility by loading the sketch into Processing (or click on the .jar file) and drag
and drop the image file to be converted into the window. The utility will create a header
file with the same name as the image file dropped into the window. The file is saved in
the bitmaps directory and an entry is automatically added to the allBitMaps.h file so
that the new image can be used in your sketch.

To demonstrate this, rename an image on your computer as me.jpg. Then run
glcdMakeBitmap and drop the image into the window that appears.

Compile and upload the following sketch to show the supplied Arduino icon followed
by the image you created:
/*
* GLCDImage
* Display an image defined in me.h

*/
#include <glcd.h>
#include "bitmaps/allBitmaps.h" // all images in the bitmap folder
void setup()

GLCD.Init(); // initialize the library

GLCD.ClearScreen();

GLCD.DrawBitmap(ArduinoIcon, 0,0); //draw the supplied bitmap
delay(5000);

GLCD.ClearScreen();

GLCD.DrawBitmap(me, 0,0); //draw your bitmap

}
void loop()
{

}

The following line draws the image defined in the file Arduinolcon.h that is supplied
with the library:

GLCD.DrawBitmap(ArduinoIcon, 0,0); //draw the supplied bitmap
After a delay, the following line draws the image you created that is stored in the file
me.h:

GLCD.DrawBitmap(me, 0,0);

360 | Chapter11: Using Displays

http://processing.org/
http://processing.org/

See Also

See the documentation supplied with the library for more on creating and using graph-
ical images.

The documentation also describes how you can create your own fonts.

11.11 Displaying Textona TV

Problem

You want to display text on a television or monitor with a video input.

Solution

This recipe uses a shield called TellyMate to print text or block graphics to a television.
The shield plugs into Arduino and has an output jack that connects to the video input
of a television.

The sketch prints all the characters the TellyMate can display on a TV screen:

/*
TellyMate
Simple demo for TellMmate Shield
*/
const byte ESC = 0x1B; // ASCII escape character used in TellyMate commands

void setup()

Serial.begin(57600); //57k6 baud is default TellyMate speed
clear(); // clear the screen

Serial.print(" TellyMate Character Set"); // write some text
delay(2000);

void loop()
{

byte charCode = 32; // characters 0 through 31 are control codes
for(int row=0; row < 7; row++) // show 7 rows

setCursor(2, row + 8); // center the display
for(int col= 0; col < 32; col++) // 32 characters per row

Serial.print(charCode);
charCode = charCode + 1;
delay(20);

}
delay(5000);
clear();

11.11 Displaying TextonaTV | 361

}

// TellyMate helper functions

void clear() // clear the screen
{ /] <ESC>E
Serial.print(ESC);
Serial.print('E");
}

void setCursor(int col, int row) // set the cursor
{ // <ESC>Yrc
Serial.print(ESC);
Serial.print('Y') ;
Serial.print((unsigned char)(32 + row)) ;
Serial.print((unsigned char)(32 + col)) ;

Discussion

Arduino controls the TellyMate display by sending commands to the serial port.

L)
- TellyMate communicates with the Arduino through the serial port, so
ﬁ:\ you may need to unplug the shield to upload sketches.

Figure 11-8 shows the characters that can be displayed. You can find a table of values
for each character at http://en.wikipedia.org/wiki/Code_page_437.

EEw e 24 Jold QPR AT INEnl Tl e nary

?"u$z&‘()*+,—./0123456?BS:;(=)?
@HBCDEFCHIJRLHHDPQRSTUUHXYZ[\]

abcdefghlJklmnupqrstuuwxyz{|} &

: {1y g2
LI iy iy HT 3

eRFTEcprioNdestn=x2< SR LR |

Characters 0 through 31 are interpreted as screen control commands,
so only characters 32 to 255 can be displayed.

362 | Chapter11: Using Displays

http://en.wikipedia.org/wiki/Code_page_437

The sketch uses nonprintable codes, called escape codes, to differentiate printable char-
acters from commands to control the screen. Control codes consist of the ESC (short
for escape) character (hex value 0x1b) followed by one or more characters indicating
the nature of the control function. Details of all the control codes are covered in the
TellyMate documentation.

The sketch has a number of helper functions that send the appropriate sequence of
characters to achieve the desired results, enabling you to concentrate on the higher level
activity of the sketch—what you want it to do, rather than the details of how it will

do it.

The screen will show a flashing cursor; you can turn this off using a control code.
Adding the cursorHide function will turn off the cursor when the function is called:

void cursorHide()
{ /] <ESC>f
Serial.print(ESC) ; // the escape character
Serial.print('f') ; // ... followed by the letter f will turn off the cursor.

}

To add a box around the edge of the screen, add the drawBox and showXY functions at
the bottom of the previous sketch. To get the sketch to use them, add this line just
inside the opening bracket of the loop:

drawBox (1,0, 38, 24); // the screen is 38 characters wide and 25 high

The drawBox function prints characters for the four corners and the top, bottom, and
side edges using the line drawing character codes:

// characters that form the box outline

// see http

const
const
const
const
const
const

byte
byte
byte
byte
byte
byte

://en.wikipedia.org/wiki/Code_page 437

boxUL
boxUR
boxLL
boxLR
HLINE
VLINE

void drawBox(int

{

//draw top line
showXY(boxUL, startCol,startRow); // the upper-left corner
for(int col = startCol + 1; col < startCol + width-1; col++)

= 201;
= 187;

= 200;

= 188;

= 205; // horizontal line
= 186; // vertical line

startRow, int startCol, int width, int height)

Serial.print(HLINE); // the line characters

Serial.print(boxUR); // upper-right character

// draw left and right edges
for(int row = startRow + 1; row < startRow + height -1; row++)

{

}

showXY(VLINE, startCol,row); // left edge
showXY(VLINE, startCol + width-1,row); // right edge

11.11 Displaying TextonaTV | 363

// draw bottom line

showXY(boxLL, 0, startRow+height-1); // the lower-left corner character

for(int col = startCol + 1; col < startCol + width-1; col++)
Serial.print(HLINE);

Serial.print(boxLR);

}

A convenience function used by drawBox, named showXY, combines cursor positioning
and printing:

void showXY(char ch, int x, int y){
// display the given character at the screen x and y location
setCursor(x,y);
Serial.print(ch);

}

Here is an additional sketch that uses the cursor control commands to animate a ball
bouncing around the screen:

/*
TellyBounce
*/

// define the edges of the screen:

const int HEIGHT = 25; // the number of text rows

const int WIDTH = 38; // the number of characters in a row

const int LEFT = 0; // useful constants derived from the above
const int RIGHT WIDTH -1;

const int TOP 0;

const int BOTTOM = HEIGHT-1;

const byte BALL = 'o'; // character code for ball
const byte ESC = 0x1B; // ASCII escape character used in TellyMate commands
int ballX = WIDTH/2; // X position of the ball
int ballY = HEIGHT/2; // Y position of the ball
int ballDirectionY = 1; // X direction of the ball
int ballDirectionX = 1; // Y direction of the ball

// this delay moves ball across the 38-character screen in just under 4 seconds
long interval = 100;

void setup()

Serial.begin(57600); // 57k6 baud is default TellyMate speed

clear(); // clear the screen
cursorHide(); // turn cursor off
}
void loop()
moveBall();
delay(interval);

}

364 | Chapter11: Using Displays

void moveBall() {

// if the ball goes off the top or bottom, reverse its Y direction

if (ballY == BOTTOM || ballY == TOP)
ballDirectionY = -ballDirectionY;

// if the ball goes off the left or right, reverse its X direction

if ((ballX == LEFT) || (ballX == RIGHT))
ballDirectionX = -ballDirectionX;

// clear the ball's previous position
showXY(' ', ballX, ballY);

// increment the ball's position in both directions
ballX = ballX + ballDirectionX;
ballY = ballY + ballDirectionY;

// show the new position
showXY(BALL, ballX, ballY);

}

// TellyMate helper functions

void clear() // clear the screen
{ /] <ESC>E
Serial.print(ESC);
Serial.print('E");
}

void setCursor(int col, int row) // set the cursor
{ // <ESC>Yrc
Serial.print(ESC);
Serial.print('Y') ;
Serial.print((unsigned char)(32 + row)) ;
Serial.print((unsigned char)(32 + col)) ;

void cursorShow()

{ // <ESC>e
Serial.print(ESC) ;
Serial.print('e') ;

}

void cursorHide()

{ /] <ESC>f
Serial.print(ESC) ;
Serial.print('f') ;

}

void showXY(char ch, int x, int y){

// display the given character at the screen x and y location

setCursor(x,y);
Serial.print(ch);

}

11.11 Displaying TextonaTV | 365

See Also

Detailed information on the TellyMate shield is available at http://www.batsocks.co.uk/
products/Shields/index_Shields.htm.

Much more information on code page 437, including a table of characters, is available
at http://en.wikipedia.org/wiki/Code_page_437.

366 | Chapter11: Using Displays

http://www.batsocks.co.uk/products/Shields/index_Shields.htm
http://www.batsocks.co.uk/products/Shields/index_Shields.htm
http://en.wikipedia.org/wiki/Code_page_437

CHAPTER 12
Using Time and Dates

12.0 Introduction

Managing time is a fundamental element of interactive computing. This chapter covers
built-in Arduino functions and introduces many additional techniques for handling
time delays, time measurement, and real-world times and dates.

12.1 Creating Delays

Problem

You want your sketch to pause for some period of time. This may be some number of
milliseconds, or a time given in seconds, minutes, hours, or days.

Solution

The Arduino delay function is used in many sketches throughout this book. delay
pauses a sketch for the number of milliseconds specified as a parameter. (There are
1,000 milliseconds in one second.) The sketch that follows shows how you can use
delay to get almost any interval:

/*

* delay sketch

*/

1000; // a second is a thousand milliseconds
oneSecond * 60;

oneMinute * 60;

oneHour * 24;

const long oneSecond
const long oneMinute
const long oneHour
const long oneDay

void setup()

Serial.begin(9600);

367

void loop()

Serial.println("delay for 1 millisecond");

delay(1);
Serial.println("delay for 1 second");
delay(oneSecond);
Serial.println("delay for 1 minute");
delay(oneMinute);
Serial.println("delay for 1 hour");
delay(oneHour);
Serial.println("delay for 1 day");
delay(oneDay);
Serial.println("Ready to start over");
}
Discussion

The delay function has a range from one one-thousandth of a second to around 25 days
(just less than 50 days if using an unsigned long variable type; see Chapter 2 for more
on variable types).

The delay function pauses the execution of your sketch for the duration of the delay.
If you need to perform other tasks within the delay period, using millis, as explained
in Recipe 12.2, is more suitable.

You can use delayMicroseconds to delay short periods. There are 1,000 microseconds
in one millisecond, and 1 million microseconds in one second. delayMicroseconds will
pause from one microsecond to around 16 milliseconds, but for delays longer than a
few thousand microseconds you should use delay instead:

delayMicroseconds(10); // delay for 10 microseconds

~)

W

delay and delayMicroseconds will delay for at least the amount of time
given as the parameter, but they could delay a little longer if interrupts
Qs occur within the delay time.

See Also

The Arduino reference for delay: http://www.arduino.cc/en/Reference/Delay

12.2 Using millis to Determine Duration

Problem

You want to know how much time has elapsed since an event happened; for example,
how long a switch has been held down.

368 | Chapter12: Using Time and Dates

http://www.arduino.cc/en/Reference/Delay

Solution

Arduino has a function named millis (short for milliseconds) that is used in the fol-
lowing sketch to print how long a button was pressed (see Recipe 5.2 for details on
how to connect the switch):
/*
millisDuration sketch
returns the number of milliseconds that a button has been pressed

*/
const int switchPin = 2; // the number of the input pin

long startTime; // the value returned from millis when the switch is pressed
long duration; // variable to store the duration

void setup()

pinMode(switchPin, INPUT);
digitalWrite(switchPin, HIGH); // turn on pull-up resistor
Serial.begin(9600);

}

void loop()
{
if(digitalRead(switchPin) == LOW)

// here if the switch is pressed
startTime = millis();
while(digitalRead(switchPin) == LOW)

; // wait while the switch is still pressed
long duration = millis() - startTime;
Serial.println(duration);

}
}

Discussion

Themillis function returns the number of milliseconds since the current sketch started
running. This number will overflow (go back to zero) in approximately 50 days.

By storing the start time for an event, you can determine the duration of the event by
subtracting the start time from the current time, as shown here:

long duration = millis() - startTime;

You can create your own delay function using millis that can continue to do other
things while checking repeatedly to see if the delay period has passed. One example of
this can be found in the BlinkWithoutDelay sketch provided with the Arduino distri-
bution. Here is the loop code in that sketch:

12.2 Using millis to Determine Duration | 369

void loop()
// here is where you'd put code that needs to be running all the time...

The next line checks to see if the desired interval has passed:

if (millis() - previousMillis > interval)
// save the last time you blinked the LED

If the interval has passed, the current millis value is saved in the variable
previousMillis:

previousMillis = millis();

// if the LED is off turn it on and vice versa:
if (ledState == LOW)

ledState = HIGH;
else

ledState = LOW;

// set the LED with the ledState of the variable:
digitalWrite(ledPin, ledState);

}

Here is a way to package this logic into a function named myDelay that will delay the
code in loop but can perform some action during the delay period. You can customize
the functionality for your application, but in this example, an LED is flashed five times
per second even while the print statement in loop is delayed for four-second intervals:

// blink an LED for a set amount of time

const int ledPin = 13; // the number of the LED pin
int ledState = LOW; // ledState used to set the LED
long previousMillis = 0; // will store last time LED was updated

void setup()

pinMode(ledPin, OUTPUT);
Serial.begin(9600);

void loop()

Serial.println(millis() / 1000); // print the number of elapsed seconds every
four seconds

// wait four seconds (but at the same time, quickly blink an LED)

myDelay(4000);

// duration is delay time in milliseconds
void myDelay(unsigned long duration)

unsigned long start = millis();

370 | Chapter12: Using Time and Dates

while (millis() - start <= duration)

blink(100); // blink the LED inside the while loop

// interval is the time that the LED is on and off
void blink(long interval)

if (millis() - previousMillis > interval)

// save the last time you blinked the LED
previousMillis = millis();
// if the LED is off turn it on and vice versa:
if (ledState == LOW)
ledState = HIGH;
else
ledState = LOW;
digitalWrite(ledPin, ledState);
}
}

You can put code in the myDelay function for an action that you want to happen re-
peatedly while the function waits for the specified time to elapse.

Another approach is to use a third-party library available from the Arduino Playground,
called TimedAction (http://www.arduino.cc/playground/Code/TimedAction):

#include <TimedAction.h>
//this initializes a TimedAction class that will change the state of an LED

every second.
TimedAction timedAction = TimedAction(NO_PREDELAY,1000,blink);

const int ledPin = 13; // the number of the LED pin
boolean ledState = false;

void setup()
pinMode(ledPin,OUTPUT);
digitalWrite(ledPin,ledState);

void loop()
{

timedAction.check();
}

void blink()

if (ledState == LOW)
ledState = HICH;
else

12.2 Using millis to Determine Duration | 371

http://www.arduino.cc/playground/Code/TimedAction

ledState = LOW;

ledState ? ledState=false : ledState=true;
digitalWrite(ledPin,ledState);

See Also

The Arduino reference for millis: hitp://www.arduino.cc/en/Reference/Millis

12.3 More Precisely Measuring the Duration of a Pulse

Problem

You want to determine the duration of a pulse with microsecond accuracy; for example,
to measure the exact time between two button presses.

Solution

The pulseIn function returns the duration in microseconds for a changing signal on a
digital pin. This sketch prints the time that the voltage on a digital pin is held LOW by a
button press. As in Recipe 12.2, this uses the wiring shown in Recipe 5.2:
/*
PulseIn sketch
uses pulseIn to display how long a switch is pressed and released

*/

const int inputPin = 2; // input pin for the switch
long val;

void setup()

{

pinMode(inputPin, INPUT);

digitalWrite(inputPin,HIGH); // turn on internal pull-up on the inputPin
Serial.begin(9600);

Serial.println("Press and release switch");

void loop()
{

val = pulseIn(inputPin, LOW);
if(val != 0) // timeout returns o

Serial.print("switch pressed for ");
Serial.print(val);
Serial.println(" microseconds");
}
}

372 | Chapter12: Using Time and Dates

http://www.arduino.cc/en/Reference/Millis

Discussion

pulseIn can measure how long a pulse is either HIGH or LOW:

pulseIn(pin, HIGH); // returns microseconds that pulse is HICH
pulseIn(pin, LOW) // returns microseconds that pulse is LOW

The pulseIn function waits for the pulse to start (or for a timeout if there is no pulse).
By default, it will stop waiting after one second, but you can change that by specifying
the time to wait in microseconds as a third parameter (note that 1,000 microseconds
equals 1 millisecond):

pulseIn(pin, HIGH, 5000); // wait 5 milliseconds for the pulse to start

N

The timeout value only matters if the pulse does not start within the
given period. Once the start of a pulse is detected, the function will start
* Qls timing and will not return until the pulse ends.

pulseIn can measure values between around 10 microseconds to three minutes in du-
ration, but the value of long pulses may not be very accurate.

See Also
The Arduino reference for pulselIn: http://www.arduino.cc/en/Reference/Pulseln

Recipe 6.4 shows pulseln used to measure the pulse width of an ultrasonic distance
sensor.

Recipe 18.2 provides more information on using hardware interrupts.

12.4 Using Arduino As a Clock

Problem

You want to use the time of day (hours, minutes, and seconds) in a sketch, and you
don’t want to connect external hardware.

Solution

This sketch uses the Time library to display the time of day:
/*

* Time sketch
*

*/

#include <Time.h>

12.4 Using Arduino Asa Clock | 373

http://www.arduino.cc/en/Reference/PulseIn

void setup()
{

Serial.begin(9600);
setTime(12,0,0,1,1,11); // set time to noon Jan 1 2011

}

void loop()
{

digitalClockDisplay();
delay(1000);

void digitalClockDisplay(){
// digital clock display of the time
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");
Serial.print(year());
Serial.println();

}

void printDigits(int digits){
// utility function for clock display: prints preceding colon and leading 0
Serial.print(":");
if(digits < 10)
Serial.print('0');
Serial.print(digits);
}

Discussion

The Time library enables you to keep track of the date and time. A standard Arduino
board uses a quartz crystal for timing, and this is accurate to a couple of seconds per
day, but it does not have a battery to remember the time when power is switched off.
Therefore, time will restart from 0 each time a sketch starts, so you need to set the time
using the setTime function. The sketch sets the time to noon on January 1 each time it
starts.

The Time library uses a standard known as Unix (also called POSIX)
time. The values represent the number of elapsed seconds since January
~ 98 1,1970. Experienced C programmers may recognize that this is the same
" asthe time_t used in the ISO standard C library for storing time values.

Of course, it’s more useful to set the time to your current local time instead of a fixed
value. The following sketch gets the numerical time value (the number of elapsed
seconds since January 1, 1970) from the serial port to set the time. You can enter a

374 | Chapter12: Using Time and Dates

value using the Serial Monitor (the current Unix time can be found on a number of

websites using the Google search terms “Unix time convert”):

/*

* TimeSerial sketch

* example code illustrating Time library set through serial port messages.

*

* Messages consist of the letter T followed by ten digit time (as seconds since
Jan 1 1970)

* You can send the text on the next line using Serial Monitor to set the clock
to noon Jan 1 2011

T 1293883200

*

* A Processing example sketch to automatically send the messages is included in
the download
*/

#include <Time.h>

#define TIME_MSG LEN 11 // time sync consists of a HEADER followed by ten
ascii digits
#tdefine TIME_HEADER 'T' // Header tag for serial time sync message

void setup() {
Serial.begin(9600);
Serial.println("Waiting for time sync message");

}

void loop(){
if(Serial.available())
{

processSyncMessage();
if(timeStatus()!= timeNotSet)
{

// here if the time has been set
digitalClockDisplay();

delay(1000);

void digitalClockDisplay(){
// digital clock display of the time
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");
Serial.print(year());
Serial.println();

12.4 Using Arduino Asa Clock | 375

void printDigits(int digits){
// utility function for digital clock display: prints preceding colon and
leading 0
Serial.print(":");
if(digits < 10)
Serial.print('o"');
Serial.print(digits);

void processSyncMessage() {
// if time sync available from serial port, update time and return true
// time message consists of a header and ten ascii digits
while(Serial.available() >= TIME_MSG_LEN){
char ¢ = Serial.read() ;
Serial.print(c);
if(¢ == TIME_HEADER) {
time_t pctime = 0;
for(int i=0; i < TIME_MSG_LEN -1; i++){
c = Serial.read();
if(c»>= '0" 8& c <= '"9"){
pctime = (10 * pctime) + (c - '0") ; // convert digits to a number

}

setTime(pctime); // Sync clock to the time received on serial port

}
}

The code to display the time and date is the same as before, but now the sketch waits
to receive the time from the serial port. See the Discussion in Recipe 4.3 if you are not
familiar with how to receive numeric data using the serial port.

A processing sketch named SyncArduinoClock is included with the Time library ex-
amples (it’s in the Time/Examples/Processing/SyncArduinoClock folder). This Process-
ing sketch will send the current time from your computer to Arduino at the click of a
mouse. Run SyncArduinoClock in Processing, ensuring that the serial port is the one
connected to Arduino (Chapter 4 describes how to run a Processing sketch that talks
to Arduino). You should see the message Waiting for time sync message sent by
Arduino and displayed in the Processing text area (the black area for text messages at
the bottom of the Processing IDE). Click the Processing application window (it’s a 200-
pixel gray square) and you should see the text area display the time as printed by the
Arduino sketch.

You can also set the clock from the Serial Monitor if you can get the current Unix time;
http://www.epochconverter.com/ is one of many websites that provide the time in this
format. Copy the 10-digit number indicated as the current Unix time and paste this
into the Serial Monitor Send window. Precede the number with the letter T and click
Send. For example, if you send this:

T1282041639

376 | Chapter12: Using Time and Dates

http://www.epochconverter.com/

Arduino should respond by displaying the time every second:

10:40:49 17 8 2010
10:40:50 17 8 2010
10:40:51 17 8 2010
10:40:52 17 8 2010
10:40:53 17 8 2010
10:40:54 17 8 2010

You can also set the time using buttons or other input devices such as tilt sensors, a
joystick, or a rotary encoder.

The following sketch uses two buttons to move the clock “hands” forward or backward.
Figure 12-1 shows the connections (see Recipe 5.2 if you need help using switches):
/*
AdjustClockTime sketch
buttons on pins 2 and 3 adjust the time

*/
#include <Time.h>

const int btnForward = 2; // button to move time forward
const int btnBack = 3; // button to move time back

unsigned long prevtime; // when the clock was last displayed
void setup()

digitalWrite(btnForward, HIGH); // enable internal pull-up resistors
digitalWrite(btnBack, HIGH);

setTime(12,0,0,1,1,11); // start with the time set to noon Jan 1 2011
Serial.begin(9600);

Serial.println("ready");

}

void loop()

prevtime = now(); // note the time
while(prevtime == now()) // stay in this loop till the second changes

// check if the set button pressed while waiting for second to roll over
if(checkSetTime())
prevtime = now(); // time changed so reset start time

}
digitalClockDisplay();
}

The sketch uses the same digitalClockDisplay and printDigits functions from
Recipe 12.3, so copy those prior to running the sketch.

12.4 Using Arduino Asa Clock | 377

00000000 CXAACCC
£5 DIGITAL =a
1 Time Time
Arduino | iovs Movs
;‘ ,: Forward Back
oo
\ \

N
_J
T
_/
RESET
V3
1 =
3 =
4 K
5

Osv
6nd
E)Gnd
Ovin
o
o

Figure 12-1. Two buttons used to adjust the time

Here is a variation on this sketch that uses the position of a variable resistor to determine
the direction and rate of adjustment when a switch is pressed:

#include <Time.h>

const int potPin = 0; // pot to determine direction and speed
const int buttonPin = 2; // button enables time adjustment

unsigned long prevtime; // when the clock was last displayed
void setup()

digitalWrite(buttonPin, HICH); // enable internal pull-up resistors
setTime(12,0,0,1,1,11); // start with the time set to noon Jan 1 2011
Serial.begin(9600);

}

void loop()

prevtime = now(); // note the time
while(prevtime == now()) // stay in this loop till the second changes

// check if the set button pressed while waiting for second to roll over
if(checkSetTime())
prevtime = now(); // time changed so reset start time
}
digitalClockDisplay();
}

// functions checks to see if the time should be adjusted
// returns true if time was changed
boolean checkSetTime()

378 | Chapter12: Using Time and Dates

int value; // a value read from the pot
int step; // the number of seconds to move (backwards if negative)
boolean isTimeAdjusted = false; // set to true if the time is adjusted

while(digitalRead(buttonPin)== LOW)

// here while button is pressed
value = analogRead(potPin); // read the pot value
step = map(value, 0,1023, 10, -10); // map value to the desired range
if(step !=0)
{
adjustTime(step);

isTimeAdjusted = true; // to tell the user that the time has changed
digitalClockDisplay(); // update clock
delay(100);

}
return isTimeAdjusted;

}

The preceding sketch uses the same digitalClockDisplay and printDigits functions

from Recipe 12.3, so copy those prior to running the sketch. Figure 12-2 shows how
the variable resistor and switch are connected.

o
\ P;ejss fo
adjust
QHOO0000 Q000000 |+ e
2357 7 77 =z
= DIGITAL
Arduino 5
[s Nl
0 Q)
| | | = b WD WD = =l M B s
NN @
Adjust Pot
To Set Direction
/ and Rate

Figure 12-2. A variable resistor used to adjust the time

12.4 Using Arduino Asa Clock | 379

All these examples print to the serial port, but you can print the output to LEDs or
LCDs. The download for the Graphical LCD covered in Recipe 11.9 contains example
sketches for displaying and setting time using an analog clock display drawn on the
LCD.

The Time library includes convenience functions for converting to and from various
time formats. For example, you can find out how much time has elapsed since the start
of the day and how much time remains until the day’s end. You can look in Time.h in
the libraries folder for the complete list. More details are available in Chapter 16:

dayOofieek (now()); //the day of the week (Sunday is day 1)
elapsedSecsToday(now()); // returns the number of seconds since the start
of today

nextMidnight(now()); // how much time to the end of the day
elapsedSecsThisWeek(now()); // how much time has elapsed since the start of
the week

You can also print text strings for the days and months; here is a variation on the digital
clock display code that prints the names of the day and month:

void digitalClockDisplay(){
// digital clock display of the time
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(dayStr(weekday())); // print the day of the week
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(monthShortStr(month())); // print the month (abbreviated)
Serial.print(" ");
Serial.print(year());
Serial.println();

}

See Also
Arduino Time library reference: http://www.arduino.cc/playground/Code/Time
Wikipedia article on Unix time: http://en.wikipedia.org/wiki/Unix_time

http://www.epochconverter.com/ and http://www.onlineconversion.com/unix_time.htm
are two popular Unix time conversion tools.

12.5 Creating an Alarm to Periodically Call a Function

Problem

You want to perform some action on specific days and at specific times of the day.

380 | Chapter12: Using Time and Dates

http://www.arduino.cc/playground/Code/Time
http://en.wikipedia.org/wiki/Unix_time
http://www.epochconverter.com/
http://www.onlineconversion.com/unix_time.htm

Solution

TimeAlarms is a companion library included in the Time library download discussed
in Recipe 12.4 (installing the Time library will also install the TimeAlarms library).

TimeAlarms makes it easy to create time and date alarms:

TimeAlarmExample sketch

This example calls alarm functions at 8:30 am and at 5:45 pm (17:45)
and simulates turning lights on at night and off in the morning

A timer is called every 15 seconds
Another timer is called once only after 10 seconds

At startup the time is set to Jan 1 2010 8:29 am

#include <Time.h>
#include <TimeAlarms.h>

void setup()

Serial.begin(9600);

Serial.println("TimeAlarms Example");

Serial.println("Alarms are triggered daily at 8:30 am and 17:45 pm");
Serial.println("One timer is triggered every 15 seconds");
Serial.println("Another timer is set to trigger only once after 10 seconds");
Serial.println();

setTime(8,29,40,1,1,10); // set time to 8:29:40am Jan 1 2010

Alarm.alarmRepeat(8,30,0, MorningAlarm); // 8:30am every day
Alarm.alarmRepeat(17,45,0,EveningAlarm); // 5:45pm every day

Alarm.timerRepeat (15, RepeatTask); // timer for every 15 seconds
Alarm.timerOnce(10, OnceOnlyTask); // called once after 10 seconds
}
void MorningAlarm()
{
Serial.println("Alarm: - turn lights off");
}
void EveningAlarm()
{
Serial.println("Alarm: - turn lights on");
}

void RepeatTask()

Serial.println("15 second timer");

}

void OnceOnlyTask()

12.5 Creating an Alarm to Periodically Call a Function

| 381

{

Serial.println("This timer only triggers once");

}

void loop()

digitalClockDisplay();
Alarm.delay(1000); // wait one second between clock display

}

void digitalClockDisplay()

{
// digital clock display of the time

Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.println();

}

void printDigits(int digits)
{

// utility function for digital clock display: prints preceding colon and
leading o
Serial.print(":");
if(digits < 10)
Serial.print('o"');
Serial.print(digits);

Discussion

You can schedule tasks to trigger at a particular time of day (these are called alarms)
or schedule tasks to occur after an interval of time has elapsed (called timers). Each of
these tasks can be created to continuously repeat or to occur only once.

To specify an alarm to trigger a task repeatedly at a particular time of day use:
Alarm.alarmRepeat(8,30,0, MorningAlarm);

This calls the function MorningAlarm at 8:30 a.m. every day.

If you want the alarm to trigger only once, you can use the alarmOnce method:
Alarm.alarmOnce(8,30,0, MorningAlarm);

This calls the function MorningAlarm a single time only (the next time it is 8:30 a.m.)
and will not trigger again.

Timers trigger tasks that occur after a specified interval of time has passed rather than
at a specific time of day. The timer interval can be specified in any number of seconds,
or in hour, minutes, and seconds:

Alarm.timerRepeat (15, Repeats); // timer task every 15 seconds

This calls the Repeats function in your sketch every 15 seconds.

382 | Chapter12: Using Time and Dates

If you want a timer to trigger once only, use the timerOnce method:

Alarm.timerOnce(10, OnceOnly); // called once after 10 seconds

This calls the onceOnly function in a sketch 10 seconds after the timer is created.

Your code needs to call Alarm.delay regularly because this function
checks the state of all the scheduled events. Failing to regularly call
s Alarm.delay will result in the alarms not being triggered. You can call
" Alarm.delay(0) if you need to service the scheduler without a delay.

Always use Alarm.delay instead of delay when using TimeAlarms in a
sketch.

The TimeAlarms library requires the Time library to be installed—see Recipe 12.4. No
internal or external hardware is required to use the TimeAlarms library. The scheduler
does not use interrupts, so the task-handling function is the same as any other functions
you create in your sketch (code in an interrupt handler has restrictions that are dis-
cussed in Chapter 18, but these do not apply to TimeAlarms functions).

Timer intervals can range from one second to several years. (If you need timer intervals
shorter than one second, the TimedAction library by Alexander Brevig may be more
suitable; see http://www.arduino.cc/playground/Code/TimedAction.)

Tasks are scheduled for specific times designated by the system clock in the Time library
(see Recipe 12.4 for more details). If you change the system time (e.g., by calling set
Time), the trigger times are not adjusted. For example, if you use setTime to move one
hour ahead, all alarms and timers will occur one hour sooner. In other words, if it’s
1:00 and a task is set to trigger in two hours (at 3:00), and then you change the current
time to 2:00, the task will trigger in one hour. If the system time is set backward—for
example, to 12:00—the task will trigger in three hours (i.e., when the system time
indicates 3:00). If the time is reset to earlier than the time at which a task was scheduled,
the task will be triggered immediately (actually, on the next call to Alarm.delay).

This is the expected behavior for alarms—tasks are scheduled for a specific time of day
and will trigger at that time—but the effect on timers may be less clear. If a timer is
scheduled to trigger in five minutes’ time and then the clock is set back by one hour,
that timer will not trigger until one hour and five minutes have elapsed (even if it is a
repeating timer—a repeat does not get rescheduled until after it triggers).

Up to six alarms and timers can be scheduled to run at the same time. You can modify
the library to enable more tasks to be scheduled; Recipe 16.3 shows you how to do this.

onceOnly alarms and timers are freed when they are triggered, and you can reschedule
these as often as you want so long as there are no more than six pending at one time.
The following code gives one example of how a timerOnce task can be rescheduled:

Alarm.timerOnce(random(10), randomTimer); // trigger after random number of
seconds

12.5 Creating an Alarm to Periodically Call a Function | 383

http://www.arduino.cc/playground/Code/TimedAction

void randomTimer (){
int period = random(2,10); // get a new random period
Alarm.timerOnce(period, randomTimer); // trigger for another random period

}

12.6 Using a Real-Time Clock

Problem

You want to use the time of day provided by a real-time clock (RTC). External boards
usually have battery backup, so the time will be correct even when Arduino is reset or
turned off.

Solution

The simplest way to use an RTC is with a companion library for the Time library, named
DS1307RTC.h. This recipe is for the widely used DS1307 and DS1337 RTC chips:

/*
* TimeRTC sketch

* example code illustrating Time library with real-time clock.
*

*/

#include <Time.h>
#include <Wire.h>
#include <DS1307RTC.h> // a basic DS1307 library that returns time as a time t

void setup() {
Serial.begin(9600);
setSyncProvider (RTC.get); // the function to get the time from the RTC
if(timeStatus()!= timeSet)
Serial.println("Unable to sync with the RTC");
else
Serial.println("RTC has set the system time");
}

void loop()
{

digitalClockDisplay();
delay(1000);

void digitalClockDisplay(){
// digital clock display of the time
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());

384 | Chapter12: Using Time and Dates

Serial.print(" ");
Serial.print(year());
Serial.println();

}

void printDigits(int digits){
// utility function for digital clock display: prints preceding colon and
leading o
Serial.print(":");
if(digits < 10)
Serial.print('o"');
Serial.print(digits);

Most RTC boards for Arduino use the I12C protocol for communicating (see Chap-
ter 13 for more on I2C). Connect the line marked “SCL” (or “Clock”) to Arduino analog
pin 5 and “SDA” (or “Data”) to analog pin 4, as shown in Figure 12-3. (Analog pins 4
and 5 are used for I12C; see Chapter 13). Take care to ensure that you connect the +5V
power line and Gnd pins correctly.

o

DIGITAL

AREF]

Seesecsleceecesl
a7 2B

Arduino

+5v (VCC)

OO E & & oo o oo

Figure 12-3. Connecting a real-time clock

Discussion

The code is similar to other recipes using the Time library, but it gets its value from the
RTC rather than from the serial port or hardcoded value. The only additional line
needed is this:

setSyncProvider (RTC.get); // the function to get the time from the RTC
The setSyncProvider function tells the Time library how it should get information for

setting (and updating) the time. RTC. get is a method within the RTC library that returns
the current time in the format used by the Time library (Unix time).

12.6 Using a Real-Time Clock | 385

Each time Arduino starts, the setup function will call RTC.get to set the time from the
RTC hardware.

Before you can get the correct time from the module, you need to set its time. Here is
a sketch that enables you to set the time on the RTC hardware—you only need to do
this when you first attach the battery to the RTC, when replacing the battery, or if the
time needs to be changed:

TimeRTCSet sketch
example code illustrating Time library with real-time clock.

RTC is set in response to serial port time message
A Processing example sketch to set the time is included in the download

#include <Time.h>
#include <Wire.h>
#include <DS1307RTC.h> // a basic DS1307 library that returns time as a time t

void setup() {
Serial.begin(9600);
setSyncProvider (RTC.get); // the function to get the time from the RTC
if(timeStatus()!= timeSet)
Serial.println("Unable to sync with the RTC");
else
Serial.println("RTC has set the system time");
}

void loop()
{

if(Serial.available())

{
time_t t = processSyncMessage();
if(t >0)
RTC.set(t); // set the RTC and the system time to the received value
setTime(t);
}
}
digitalClockDisplay();
delay(1000);

void digitalClockDisplay(){
// digital clock display of the time
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(month());
Serial.print(" ");

386 | Chapter12: Using Time and Dates

Serial.print(year());
Serial.println();

}

void printDigits(int digits){

// utility function for digital clock display: prints preceding colon and
leading 0

Serial.print(":");

if(digits < 10)

Serial.print('o"');

Serial.print(digits);

}

/* code to process time sync messages from the serial port */

#define TIME MSG LEN 11 // time sync to PC is HEADER followed by unix time t
as ten ascii digits

#tdefine TIME_HEADER 'T' // Header tag for serial time sync message

time_t processSyncMessage() {
// return the time if a valid sync message is received on the serial port.
// time message consists of a header and ten ascii digits
while(Serial.available() >= TIME_MSG_LEN){
char ¢ = Serial.read() ;
Serial.print(c);
if(¢ == TIME_HEADER) {
time_t pctime = 0;
for(int i=0; i < TIME_MSG LEN -1; i++){
¢ = Serial.read();
if(c>='0" 8 c <= "9"){
pctime = (10 * pctime) + (c - '0') ; // convert digits to a number

}

return pctime;
}
}

return 0;

}

This sketch is almost the same as the TimeSerial sketch in Recipe 12.4 for setting the
time from the serial port, but here the following function is called when a time message
is received from the computer to set the RTC:

RTC.set(t); // set the RTC and the system time to the received value
setTime(t);

The RTC chip uses 12C to communicate with Arduino. 12C is explained in Chap-
ter 13; see Recipe 13.3 if you are interested in more details on I12C communication with
the RTC chip.

See Also
The SparkFun BOB-00099 data sheet: http://store.gravitech.us/i2crecl.html

12.6 Using a Real-Time Clock | 387

http://store.gravitech.us/i2crecl.html

CHAPTER 13
Communicating Using 12C and SPI

13.0 Introduction

The 12C (Inter-Integrated Circuit) and SPI (Serial Peripheral Interface) standards were
created to provide simple ways for digital information to be transferred between sensors
and microcontrollers such as Arduino. Arduino libraries for both I12C and SPI make it
easy for you to use both of these protocols.

The choice between 12C and SPI is usually determined by the devices you want to
connect. Some devices provide both standards, but usually a device or chip supports
one or the other.

I2C has the advantage that it only needs two signal connections to Arduino—using
multiple devices on the two connections is fairly easy, and you get acknowledgment
that signals have been correctly received. The disadvantages are that the data rate is
slower than SPI and data can only be traveling in one direction at a time, lowering the
data rate even more if two-way communication is needed. It is also necessary to connect
pull-up resistors to the connections to ensure reliable transmission of signals (see the
introduction to Chapter 5 for more on pull-ups).

The advantages of SPI are that it runs at a higher data rate, and it has separate input
and output connections, so it can send and receive at the same time. It uses one addi-
tional line per device to select the active device, so more connections are required if
you have many devices to connect.

Most Arduino projects use SPI devices for high data rate applications such as Ethernet
and memory cards, with just a single device attached. 12C is more typically used with
sensors that don’t need to send a lot of data.

This chapter shows how to use I2C and SPI to connect to common devices. It also
shows how to connect two or more Arduino boards together using 12C for multiboard
applications.

389

12C

The two connections for the 12C bus are called SCL and SDA. These are available on
a standard Arduino board using analog pin 5 for SCL, which provides a clock signal,
and analog pin 4 for SDL, which is for transfer of data (on the Mega, use digital pin 20
for SDA and pin 21 for SCL). One device on the [2C bus is considered the master device.
Its job is to coordinate the transfer of information between the other devices (slaves)

that are attached. There must be only one master, and in most cases the Arduino is the
master, controlling the other chips attached to it. Figure 13-1 depicts an [12C master
with multiple I2C slaves.

Pull-up
Resa’sfors\ +V
Mog 5 \ D
12€ Data
Master Nog | Clock
SCL SDA +HV
2C o
Decoupling Sld\' ©
Capacitor Gnd

12C devices need a common ground to communicate. The Arduino Gnd
pin must be connected to ground on each 12C device.

Slave devices are identified by their address number. Each slave must have a unique
address. Some 12C devices have a fixed address (an example is the nunchuck in Rec-
ipe 13.2) while others allow you to configure their address by setting pins high or low
(see Recipe 13.7) or by sending initialization commands.

Arduino uses 7-bit values to specify 12C addresses. Some device data
sheets use 8-bit address values. If yours does, divide that value by 2 to
s get the correct 7-bit value.

12C and SPI only define how communication takes place between devices—the mes-
sages that need to be sent depend on each individual device and what it does. You will
need to consult the data sheet for your device to determine what commands are required
to get it to function, and what data is required, or returned.

390 | Chapter13: Communicating Using 12Cand SPI

The Arduino Wire library hides all the low-level functionality for I2C and enables sim-
ple commands to be used to initialize and communicate with devices. Recipe 13.1
provides a basic introduction to the library and its use.

SPI

Recent Arduino releases (from release 0019) include a library that allows communica-
tion with SPI devices. SPI has separate input (labeled “MOSI”) and output (labeled
“MISO”) lines and a clock line. These three lines are connected to the respective lines
on one or more slaves. Slaves are identified by signaling with the Slave Select (SS) line.
Figure 13-2 shows the SPI connections.

SCLK
MosI
MISO
581
552
T S M M S
SPI Master c 0o 1 s c 0 1 s
L § S L s S
K 1 0 K 1 0
SPI Slave SPI Slave

Figure 13-2. Signal connections for SPI master and slaves

The pin numbers to use for the SPI pins are shown in Table 13-1.

Table 13-1. Arduino digital pins used for SPI

SPI signal Standard Arduino board Arduino Mega
SCLK (clock) 13 52
MISO (dataout) 12 50
MOSI (data in) n 51
SS (slave select) 10 53
See Also

Applications note comparing 12C to SPI: http://www.maxim-ic.com/app-notes/index
.mvp/id/4024

Arduino Wire library reference: hitp://www.arduino.cc/en/Reference/Wire

Arduino SPI library reference: http://www.arduino.cc/playground/Code/Spi

13.0 Introduction | 391

http://www.maxim-ic.com/app-notes/index.mvp/id/4024
http://www.maxim-ic.com/app-notes/index.mvp/id/4024
http://www.arduino.cc/en/Reference/Wire
http://www.arduino.cc/playground/Code/Spi

13.1 Controlling an RGB LED Using the BlinkM Module

Problem
You want to control I2C-enabled LEDs such as the BlinkM module.

Solution

BlinkM is a preassembled color LED module that gets you started with 12C with min-
imal fuss.

Insert the BlinkM pins onto analog pins 2 through 5, as shown in Figure 13-3.

00000000)300000000)
=377 77 DiGiAL =z

Arduino

- (Y s | s
AW,

Figure 13-3. BlinkM module plugged into analog pins

P

d
RESET

EiVu\
@

V3
5V

Gnd
Gnd

(

The following sketch is based on Recipe 7.4, but instead of directly controlling the
voltage on the red, green, and blue LED elements, I2C commands are sent to the BlinkM
module with instructions to produce a color based on the red, green, and blue levels.
The hueToRGB function is the same as what we used in Recipe 7.4 and is not repeated
here, so copy the function into the bottom of your sketch before compiling (this book’s
website has the complete sketch):
/*
* BlinkM sketch
* This sketch continuously fades through the color wheel

*/
#include <Wire.h>

const int address = 0; //Default I2C address for BlinkM

392 | Chapter13: Communicating Using 12Cand SPI

int color = 0; // a value from 0 to 255 representing the hue
byte R, G, B; // the Red, Green, and Blue color components

void setup()
Wire.begin(); // set up Arduino I2C support
// turn on power pins for BlinkM
pinMode(17, OUTPUT); // pin 17 (analog out 4) provides +5V to BlinkM
digitalWrite(17, HIGH);

pinMode(16, OUTPUT); // pin 16 (analog out 3) provides Ground
digitalWrite(16, LOW);

void loop()

{
int brightness = 255; // 255 is maximum brightness
hueToRGB(color, brightness); // call function to convert hue to RGB
// write the RGB values to BlinkM

Wire.beginTransmission(address);// join I2C, talk to BlinkM

Wire.send('c'); // 'c' == fade to color
Wire.send(R); // value for red channel
Wire.send(B); // value for blue channel
Wire.send(G); // value for green channel

Wire.endTransmission(); // leave I2C bus

color++; // increment the color
if(color > 255) //
color = 0;
delay(10);

The following sketch uses a function named hueToRGB that was introduced in Chap-
ter 7 to convert an integer value into its red, green, and blue components:

// function to convert a color to its Red, Green, and Blue components.
void hueToRGB(int hue, int brightness)
{
unsigned int scaledHue = (hue * 6);
unsigned int segment = scaledHue / 256; // segment 0 to 5 around color wheel
unsigned int segmentOffset = scaledHue - (segment * 256); // position within
the segment

unsigned int complement = 0;
unsigned int prev = (brightness * (255 - segmentOffset)) / 256;
unsigned int next = (brightness * segmentOffset) / 256;

switch(segment) {
case 0: // red
R = brightness;

G = next;
B = complement;
break;

13.1 Controlling an RGB LED Using the BlinkM Module | 393

case 1: // yellow
R = prev;

G = brightness;

B = complement;
break;

case 2: // green
R = complement;

G = brightness;

B = next;

break;

case 3: // cyan
R = complement;

G = prev;

B = brightness;
break;

case 4: // blue
R = next;

G = complement;

B = brightness;

break;

case 5: // magenta
default:

R = brightness;

G = complement;

B = prev;
break;
}
}
Discussion

The Wire library is added to the sketch using the following:
#include <Wire.h>
For more details about using libraries, see Chapter 16.

The code in setup initializes the Wire library and the hardware in the Arduino to drive
SCA and SDL on analog pins 4 and 5 and turns on the pins used to power the BlinkM
module.

The loop code calls the function hueToRGB to calculate the red, green, and blue values
for the color.

The R, G, and B values are sent to BlinkM using this sequence:

Wire.beginTransmission(address); // start an I2C message to the BlinkM address

Wire.send('c'); // 'c' is a command to fade to the color that follows
Wire.send(R); // value for red

Wire.send(B); // value for blue

Wire.send(G); // value for green

Wire.endTransmission(); // complete the I2C message

All data transmission to 12C devices follows this pattern: beginTransmission, a number
of send messages, and endTransmission.

394 | Chapter13: Communicating Using 12Cand SPI

[2C supports up to 127 devices connected to the clock and data pins, and the address
determines which device will respond. The default address for BlinkM is 0, but this can
be altered by sending a command to change the address—see the BlinkM user manual
for information on all commands.

To connect multiple BlinkMs, connect all the clock pins (marked “c” on BlinkM, analog
pin 5 on Arduino) and all the data pins (marked “d” on BlinkM, analog pin 4 on Ar-
duino), as shown in Figure 13-4. The power pins should be connected to +5V and Gnd
on Arduino or an external power source, as the analog pins cannot provide enough
current for more than a couple of modules.

=5 DIGITAL e
Arduino
Blinkm Blinkm Blinkm

& ANALOG
— vy =
- (Y 28233 o amein
M Ly

Figure 13-4. Multiple BlinkM modules connected together

W N

\
A
.

Each BlinkM can draw up to 60 mA, so if you’re using more than a
"Q“ . handful, they should be powered using an external supply.
15

You need to set each BlinkM to a different [2C address, and you can use the BlinkM-
Tester sketch that comes with the BlinkM examples downloadable from http://thingm
.com/fileadmin/thingm/downloads/BlinkM_Examples.zip.

Compile and upload the BlinkMTester sketch. Plug each BlinkM module into Arduino
one at a time (switch off power when connecting and disconnecting the modules). Use
the BlinkMTester scan command, s, to display the current address, and use the A com-
mand to set each module to a different address.

13.1 Controlling an RGB LED Using the BlinkM Module | 395

http://thingm.com/fileadmin/thingm/downloads/BlinkM_Examples.zip
http://thingm.com/fileadmin/thingm/downloads/BlinkM_Examples.zip

BlinkMTester uses 19,200 baud, so you may need to set the baud rate
in the Serial Monitor to this speed to get a readable display.

After all the BlinkMs have a unique address, you can set the address variable in the
preceding sketch to the address of the BlinkM you want to control. This example as-
sumes addresses from 9 to 11:

#include <Wire.h>
int addressA = 9; //I2C address for BlinkM

int addressB = 10;
int addressC = 11;

int color = 0; // a value from 0 to 255 representing the hue
byte R, G, B; // the red, green, and blue color components

void setup()
{
Wire.begin(); // set up Arduino I2C support

// turn on power pins for BlinkM

pinMode(17, OUTPUT); // pin 17 (analog out 4) provides +5V to BlinkM
digitalWrite(17, HIGH);

pinMode(16, OUTPUT); // pin 16 (analog out 3) provides Ground
digitalWrite(16, LOW);

void loop()
{

int brightness = 255; // 255 is maximum brightness

hueToRGB(color, brightness); // call function to convert hue to RGB
// write the RGB values to each BlinkM

setColor(addressA, R,G,B);

setColor(addressB, G,B,R);

setColor(addressA, B,R,G);

color++; // increment the color
if(color > 255) // ensure valid value
color = 0;
delay(10);

void setColor(int address, byte R, byte G, byte B)

{
Wire.beginTransmission(address);// join I2C, talk to BlinkM
Wire.send('c'); // 'c' == fade to color
Wire.send(R); // value for red channel
Wire.send(B); // value for blue channel
Wire.send(G); // value for green channel
Wire.endTransmission(); // leave I2C bus

}

396 | Chapter13: Communicating Using 12Cand SPI

The setColor function writes the given RGB values to the BlinkM at the given address.

The code uses the hueToRGB function from earlier in this recipe to convert an integer
value into its red, green, and blue components.

See Also

The BlinkM User Manual: http://thingm.com/fileadmin/thingm/downloads/BlinkM_da
tasheet.pdf

Example Arduino sketches: http://thingm.com/fileadmin/thingm/downloads/Blink M_Ex
amples.zip

13.2 Using the Wii Nunchuck Accelerometer

Problem

You want to connect a Wii nunchuck to your Arduino as an inexpensive way to use
accelerometers. The nunchuck is a popular low-cost game device that can be used to
indicate the orientation of the device by measuring the effects of gravity.

Solution

The nunchuck uses a proprietary plug. If you don’t want to use your nunchuck with
your Wii again, you can cut the lead to connect it. Alternatively, it is possible to use a
small piece of matrix board to make the connections in the plug if you are careful (the
pinouts are shown in Figure 13-5) or you can buy an adapter made by Todbot (http://
todbot.com/blog/2008/02/18/wiichuck-wii-nunchuck-adapter-available/).

Nunchuck Connections
0000000 00000000
| =5 DIGITAL = 1(PWR) to Analog pin 3 (or +5v)
2(SCL) to Analog pin 5
. 5(SDA) to Analog pin 4
AdeIﬂO 6 (GND) to Analog pin 2 (or Gnd)
| | | g1

0

[] OO e83s Hn, T3
- Nunchuck Connector

Figure 13-5. Connecting a nunchuck to Arduino

13.2 Using the Wii Nunchuck Accelerometer | 397

http://thingm.com/fileadmin/thingm/downloads/BlinkM_datasheet.pdf
http://thingm.com/fileadmin/thingm/downloads/BlinkM_datasheet.pdf
http://thingm.com/fileadmin/thingm/downloads/BlinkM_Examples.zip
http://thingm.com/fileadmin/thingm/downloads/BlinkM_Examples.zip
http://todbot.com/blog/2008/02/18/wiichuck-wii-nunchuck-adapter-available/
http://todbot.com/blog/2008/02/18/wiichuck-wii-nunchuck-adapter-available/

The library supporting the nunchuck functions is available from http://todbot.com/blog/
2008/02/18/wiichuck-wii-nunchuck-adapter-available/:

/*

* nunchuck_lines sketch

* sends data to Processing to draw line that follows nunchuk movement

*/

#include <Wire.h> // initialize wire
#include "nunchuck funcs.h"

byte accx;
void setup()

Serial.begin(9600);
nunchuck_setpowerpins();
nunchuck_init();

void loop()
{

nunchuck get data();

accx = nunchuck_accelx();

if(acex >= 75 && accx <= 185)
{

// map returns a value from 0 to 63 for values from 75 to 185
byte y = map(accx, 75, 185, 0, 63);
Serial.print(y);

delay(100); // the time in milliseconds between redraws

}

Discussion

I2C is often used in commercial products such as the nunchuck for communication
between devices. There are no official data sheets for this device, but the nunchuck
signaling was analyzed (reverse engineered) to determine the commands needed to
communicate with it.

You can use the following Processing sketch to display a line that follows the nunchuck
movement, as shown in Figure 13-6 (see Chapter 4 for more on using Processing to
receive Arduino serial data; also see Chapter 4 for advice on setting up and using Pro-
cessing with Arduino):

// Processing sketch to draw line that follows nunchuck data
import processing.serial.*;

Serial myPort; // Create object from Serial class
public static final short portIndex = 1;

void setup()

398 | Chapter13: Communicating Using 12Cand SPI

http://todbot.com/blog/2008/02/18/wiichuck-wii-nunchuck-adapter-available/
http://todbot.com/blog/2008/02/18/wiichuck-wii-nunchuck-adapter-available/

size(200, 200);
// Open whatever port is the one you're using - See Chapter 4
myPort = new Serial(this,Serial.list()[portIndex], 9600);

}

void draw()

if (myPort.available() > 0) { // If data is available,

int y = myPort.read(); // read it and store it in val
background(255); // Set background to white
line(0,63-y,127,y); // draw the line

}

}

Figure 13-6. Nunchuck movement represented by tilted line in Processing

The sketch includes the Wire library for I2C communication and the nunchuck_funcs
code from the earlier link:

#include <Wire.h> // initialize wire
#include "nunchuck funcs.h"

Wire.h is the 12C library that is included with the Arduino release.

nunchuck_funcs.h is the name of the library for communicating with the nunchuck
using [2C.

The library hides the 12C interface, but here is an overview of how this library uses I2C:
The nunchuck_setpowerpins function is used to provide power through analog pins 2
and 3. This is only needed if the nunchuck adapter is providing the power source. The
code sets these pins as outputs, with pin 2 LOW and pin 3 HIGH. Using digital pins as a
power source is not usually recommended, unless you are certain, as with the nun-
chuck, that the device being powered will not exceed a pin’s maximum current capa-
bility (40 mA; see Chapter 5).

13.2 Using the Wii Nunchuck Accelerometer | 399

nunchuck_init establishes I2C communication with the nunchuck; here is the code for
this function:
// initialize the I2C system, join the I2C bus,

// and tell the nunchuck we're talking to it
static void nunchuck_init()

{
Wire.begin(); // join I2C bus as master
Wire.beginTransmission(0x52);// transmit to device 0x52
Wire.send(0x40); // sends memory address
Wire.send(0x00); // sends a zero.
Wire.endTransmission();

}

[2C communication starts with Wire.begin(). In this example, Arduino as the master
is responsible for initializing the desired slave device, the nunchuck, on address 0x52.

The following line tells the Wire library to prepare to send a message to the device at
hexadecimal address 52 (0x52):

beginTransmission(0x52);

\

W

[2C documentation typically has addresses shown using their
hexadecimal values, so it’s convenient to use this notation in your
~ sy sketch.

Wire.send puts the given values into a buffer within the Wire library where data is stored
until Wire.endTransmission is called to actually do the sending.
nunchuck get data is used to receive data from the nunchuck:

// returns 1 on successful read. returns 0 on failure
int nunchuck get data()

{
int cnt=0;
Wire.requestFrom (0x52, 6);// request data from nunchuck
while (Wire.available ()) {
// receive byte as an integer
nunchuck_buf[cnt] = nunchuck decode byte(Wire.receive());
cnt++;
nunchuck_send request(); // send request for next data payload
// If we received the 6 bytes, then go print them
if (ent >=5) {
return 1; // success
}
return 0; //failure
}

This uses the Wire library requestFrom function to get six bytes of data from device
0x52 (the nunchuck).

400 | Chapter13: Communicating Using 12Cand SPI

The nunchuck returns its data using six bytes as follows:

Byte number Description

Byte 1 X-axis analog joystick value

Byte2 Y-axis analog joystick value

Byte 3 X-axis acceleration value

Byte 4 Y-axis acceleration value

Byte 5 Z-axis acceleration value

Byte 6 Button states and least significant bits of acceleration

Wire.available works like Serial.available (see Chapter 4) to indicate how many
bytes have been received, but over the 12C interface rather than the serial interface.
If data is available, it is read using Wire.receive and then decoded using
nunchuck_decode_byte. Decoding is required to convert the values sent into numbers
that are usable by your sketch, and these are stored in a buffer (named nunchuck_buf).
A request is sent for the next six bytes of data so that it will be ready and waiting for
the next call to get data:

accx = nunchuck_accelx();

The function nunchuck_accelx is used to get the value of acceleration in the x-axis from
the nunchuck and store it in the variable accx.

13.3 Interfacing to an External Real-Time Clock

Problem

You want to use the time of day provided by an external real-time clock (RTC).

Solution

This solution uses the Wire library to access an RTC. It uses the same hardware as in
Recipe 12.6. Figure 13-7 shows the connections:
/*
* T2C_RTC sketch

* example code for using Wire library to access real-time clock
*

*/
#include <Wire.h>
const byte DS1307 CTRL_ID = 0x68; // address of the DS1307 real-time clock

const byte NumberOfFields = 7; // the number of fields (bytes) to request from
the RTC

13.3 Interfacing to an External Real-Time Clock | 401

int Second ;
int Minute;
int Hour;
int Day;

int Wday;
int Month;
int Year;

void setup() {
Serial.begin(9600);
Wire.begin();

void loop()

{
Wire.beginTransmission(DS1307_CTRL_ID);
Wire.send(0x00);

Wire.endTransmission();

// request the 7 data fields (secs, min, hr, dow, date, mth, yr)
Wire.requestFrom(DS1307_CTRL_ID, NumberOffFields);

Second = bcd2dec(Wire.receive() & ox7f);
Minute = bcd2dec(Wire.receive());

Hour = bcd2dec(Wire.receive() & ox3f); // mask assumes 24hr clock
Wday = bcd2dec(Wire.receive());

Day = bcd2dec(Wire.receive());

Month = bcd2dec(Wire.receive());

Year = bcd2dec(Wire.receive());

Year = Year + 2000; // RTC year 0 is year 2000

digitalClockDisplay(); // display the time
delay(1000);
}

// Convert Binary Coded Decimal (BCD) to Decimal
byte bcd2dec(byte num)
{

return ((num/16 * 10) + (num % 16));

void digitalClockDisplay(){

// digital clock display of the time
Serial.print(Hour);
printDigits(Minute);
printDigits(Second);
Serial.print(" ");
Serial.print(Day);
Serial.print(" ");
Serial.print(Month);
Serial.print(" ");
Serial.print(Year);
Serial.println();

402 | Chapter13: Communicating Using 12Cand SPI

}

// utility function for clock display: prints preceding colon and leading 0
void printDigits(int digits){
Serial.print(":");
if(digits < 10)
Serial.print('o"');
Serial.print(digits);
}

NS e h.\nm-rrnm-—e

DIGITAL

j Arduino \
‘ —+5v(‘.‘(() \F /

ANALOG

=]
2Ec
oSS S—rimin

DDDDFxE

S

0000000 0oo0o00a

AREFD

O
)
p
)

B RESET

N3

Figure 13-7. Connecting a real-time clock

Discussion

Although this recipe uses the same hardware as in Recipe 12.6, it accesses the hardware
through explicit 12C calls, instead of through a library, so that the interaction between
Arduino and the 12C clock can be clearly seen.

The following line initializes the RTC:

Wire.beginTransmission(DS1307_CTRL_ID);
Wire.send(0x00);
Wire.endTransmission();

The requestFrom method of the Wire library is used to request seven time fields from
the clock (DS1307_CTRL_ID is the address identifier of the clock):

Wire.requestFrom(DS1307_CTRL_ID, NumberOfFields);

The date and time values are obtained by making seven calls to the Wire.receive
method:

bcd2dec(Wire.receive()

13.3 Interfacing to an External Real-Time Clock | 403

The values returned by the module are Binary Coded Decimal (BCD) values, so the
function becd2dec is used to convert each value as it is received. (BCD is a method for
storing decimal values in four bits of data.)

See Also

Recipe 12.6 provides details on how to set the time on the clock.

13.4 Adding External EEPROM Memory

Problem

You need more permanent data storage than Arduino has onboard, and you want to
use an external memory chip to increase the capacity.

Solution

This recipe uses the 24L.C128 12C-enabled serial EEPROM from Microchip. Fig-
ure 13-8 shows the connections.

000Q0000 o000
£3 DIGITAL =z
241.C128
: [2C EEPROM
| Arduino
A0 N Vec
Al WP
‘ i A2 scL
= . —
- A Bzazze MAS Gnd __SDA
U oo Dmmgng-l
:1:0.1uf

Figure 13-8. 12C EEPROM connections

This recipe provides functionality similar to the Arduino EEPROM library (see Rec-
ipe 18.1), but it uses an external EEPROM connected using 12C to provide greatly
increased storage capacity:

404 | Chapter13: Communicating Using 12Cand SPI

/*

* I2C EEPROM sketch

* this version for 24LC128
*/

#include <Wire.h>
const byte EEPROM ID = 0x50; // I12C address for 24LC128 EEPROM

// first visible ASCII character '!' is number 33:
int thisByte = 33;

void setup()
{

Serial.begin(9600);
Wire.begin();

Serial.println("Writing 1024 bytes to EEPROM");
for(int i=0; i < 1024; i++)
{
I2CEEPROM Write(i, thisByte);
// go on to the next character
thisByte++;
if(thisByte == 126) // you could also use if (thisByte == '~')
thisByte = 33; // start over
}

Serial.println("Reading 1024 bytes from EEPROM");
int thisByte = 33;
for(int i=0; i < 1024; i++)
{
char ¢ = I2CEEPROM Read(i);
if(c != thisByte)
{
Serial.println("read error");
break;
}
else

{

Serial.print(c);

thisByte++;
if(thisByte == 126)

Serial.println();
thisByte = 33; // start over on a new line

}

}
Serial.println();

}

void loop()
{

13.4 Adding External EEPROM Memory | 405

// This function is similar to EEPROM.write()
void I2CEEPROM Write(unsigned int address, byte data)
{
Wire.beginTransmission(EEPROM_ID);
Wire.send((int)highByte(address));
Wire.send((int)lowByte(address));
Wire.send(data);
Wire.endTransmission();
delay(5); // wait for the I2C EEPROM to complete the write cycle
}

// This function is similar to EEPROM.read()
byte I2CEEPROM Read(unsigned int address)

{
byte data;
Wire.beginTransmission(EEPROM_ID);
Wire.send((int)highByte(address));
Wire.send((int)lowByte(address));
Wire.endTransmission();
Wire.requestFrom(EEPROM_ID, (byte)1);
while(Wire.available() == 0) // wait for data

)
data = Wire.receive();
return data;

}

Discussion

This recipe shows the 241L.C128, which has 128K of memory; although there are similar
chips with higher and lower capacities (the microchip link in this recipe’s See Also
section has a cross-reference). The chip’s address is set using the three pins marked
“A0” through “A2” and is in the range 0x50 to 0x57, as shown in Table 13-2.

Table 13-2. Address values for 24L.C128

Ao A1 A2 Address
Gnd Gnd Gnd 0x50
+5V Gnd Gnd 0x51
Gnd +5V Gnd 0x52
+5V +5V Gnd 0x53
Gnd Gnd +5V 0x54
+5V Gnd +5V 0x55
+5V +5V Gnd 0x56

+5V +5V +5V 0x57

Use of the Wire library in this recipe is similar to its use in Recipes 13.1 and 13.2, so
read through those for an explanation of the code that initializes and requests data from
an 12C device.

406 | Chapter13: Communicating Using 12Cand SPI

The write and read operations that are specific to the EEPROM are contained in the
functions 12cEEPROM Write and 1i2cEEPROM Read. These operations start with a
Wire.beginTransmission to the device’s 12C address. This is followed by a 2-byte value
indicating the memory location for the read or write operation. In the write function,
the address is followed by the data to be written—in this example, one byte is written
to the memory location.

The read operation sends a memory location to the EEPROM followed by
Wire.requestFrom(EEPROM_ID, (byte)1);. Thisreturns one byte of data from the memory
at the address just set.

If you need to speed up writes, you can replace the 5 ms delay with a status check to
determine if the EEPROM is ready to write a new byte. See the “Acknowledge Polling”
technique described in Section 7 of the data sheet. You can also write data in pages of
64 bytes rather than individually; details are in Section 6 of the data sheet.

The chip remembers the address it is given and will move to the next sequential address
each time a read or write is performed. If you are reading more than a single byte, you
can set the start address and then perform multiple requests and receives.

W
\
T

The Wire library can read or write up to 32 bytes in a single request.
Attempting to read or write more than this can result in bytes being
U discarded.

The pin marked “WP” is for setting write protection. It is connected to ground in the
circuit here to enable the Arduino to write to memory. Connecting it to 5V prevents
any writes from taking place. This could be used to write persistent data to memory
and then prevent it from being overwritten accidentally.

See Also

The 241.C128 data sheet: http://ww1.microchip.com/downloads/en/devicedoc/21191n
pdf
If you need to speed up writes, you can replace the 5 ms delay with a status check to

determine if the EEPROM is ready to write a new byte. See the “Acknowledge Polling”
technique described in Section 7 of the data sheet.

A cross-reference of similar [2C EEPROMSs with a wide range of capacities is available
at http://ww1.microchip.com/downloads/en/DeviceDoc/21621d.pdf.

A shield is available that combines reading temperature, storing in EEPROM, and 7-
segment display: http://store.gravitech.us/7segmentshield. html

13.4 Adding External EEPROM Memory | 407

http://ww1.microchip.com/downloads/en/devicedoc/21191n.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21191n.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21621d.pdf
http://store.gravitech.us/7segmentshield.html

13.5 Reading Temperature with a Digital Thermometer

Problem

You want to measure temperature, perhaps using more than one device, so you can
take readings in different locations.

Solution

This recipe uses the TMP75 temperature sensor from Texas Instruments. You connect

a single TMP75 as shown in Figure 13-9:
/*
* I2C_Temperature sketch
* I2C access the TMP75 digital Thermometer
*

*/
#include <Wire.h>

const byte TMP75_ID = 0x49; // address of the TMP75
const byte NumberOfFields = 2; // the number of fields (bytes) to request

// high byte of temperature (this is the signed integer value in degrees c)
char tempHighByte;

// low byte of temperature (this is the fractional temperature)

char tempLowByte;

float temperature; // this will hold the floating-point temperature

void setup() {
Serial.begin(9600);
Wire.begin();

Wire.beginTransmission(TMP75_ID);

Wire.send(1); // 1 is the configuration register

// set default configuration, see data sheet for significance of config bits
Wire.send(0);

Wire.endTransmission();

Wire.beginTransmission(TMP75_ID);
Wire.send(0); // set pointer register to 0 (this is the 12-bit temperature)
Wire.endTransmission();

}

void loop()
{

Wire.requestFrom(TMP75_ID, NumberOfFields);
tempHighByte = Wire.receive();

tempLowByte = Wire.receive();
Serial.print("Integer temperature is ");

408 | Chapter13: Communicating Using 12Cand SPI

Serial.print(tempHighByte, DEC);
Serial.print(",");

// least significant 4 bits of LowByte is the fractional temperature
int t = word(tempHighByte, tempLowByte) / 16 ;

temperature = t / 16.0; // convert the value to a float
Serial.println(temperature);

delay(1000);
}
COOOO000 Q000000
=S DIGITAL mE
TMP75
: Thermometer
Arduino
———ispA 1 veeh
. E— e} AO —
‘ : === dART AT I—
o m o ANALOG vorGnd A2
(Y (L2=F28 e ' =
S k_,/ @ DDDEHT E
:].= 0.1uf

Figure 13-9. TMP75 12C thermometer

Discussion

As with all the I2C devices in this chapter, signaling is through the two-wire SCL and
SDA pins. Power and ground need to be connected to the device, as well, to power it.

Setup sends data to configure the device for normal operation—there are a number of
options for specialized applications (interrupts, power down, etc.), but the value used
here is for normal mode with a precision of .5°C.

To get the device to send the temperature, with the Arduino (as the master), the code
in loop tells the slave (at the address given by the constant TMP75_ID) that it wants two
bytes of data:

Wire.requestFrom(TMP75_ID, NumberOfFields);

13.5 Reading Temperature with a Digital Thermometer | 409

Wire.receive gets the two bytes of information (the data sheet has more detail on how
data is requested from this device):

tempHighByte = Wire.receive();
tempLowByte = Wire.receive();

The first byte is the integer value of the temperature in degrees Celsius. The second
byte contains four significant bits indicating the fractional temperature.

The two bytes are converted to a 16-bit word (see Chapter 3) and then shifted by four
to form the 12-bit number. As the first four bits are the fractional temperature, the value
is again shifted by four to get the floating-point value.

The TNP75 can be configured for eight different addresses, allowing eight devices to
be connected to the same bus (see Figure 13-10). This sketch uses 12C address 0x48
(the TMP75 address pins labeled “A”) connected to +5V, and Al and A2 connected to
Gnd). Table 13-3 shows the connections for the eight addresses.

OCOCa000 00000000
Ll b aa L Lt =

noaCoaoa
2 p==

’—‘ 5 DIGITAL TS
. Thermometer
: Arduino

—{sDA [Ve soA) vee

] 5L Ao SCL Ao

- q P E e Gﬂlﬂ;ﬂﬁm ' Gnd A2 Gnd A2
AN [senenejee li] '
v 1]
' '
' 1]
' 1]

0.1uf 0.1uf

Figure 13-10. Multiple devices with SDA and SCL connected in parallel with different addresses

Table 13-3. Address values for TMP75

A0 Al A2 Address
Gnd Gnd Gnd 0x48
+5V Gnd Gnd 0x49
Gnd +5V Gnd 0x4A
+5V +5V Gnd 0x4B
Gnd Gnd +5V 0x4C
+5V Gnd +5V 0x4D
+5V +5V Gnd Ox4E

+5V +5V +5V Ox4F

410 | Chapter13: Communicating Using 12Cand SPI

When connecting more than one 12C device, you wire all the SDA lines together and
all the SCL lines together. Each device connects to power and should have 0.1 bypass
capacitors. The Gnd lines must be connected together, even if the devices use separate
power supplies (e.g., batteries).

This sketch prints the temperature of two devices with consecutive addresses starting
from 0x49:

#include <Wire.h>
const byte TMP75_ID = 0x49; // address of the first TMP75

const byte NumberOfFields = 2; // the number of fields (bytes) to request
const byte NumberOfDevices = 2; // the number of TMP75 devices (with consecutive
addresses)

char tempHighByte; // high byte of temperature (this is the signed integer
value in degrees c)

char tempLowByte; // low byte of temperature (this is the fractional
temperature)

float temperature; // this will hold the floating-point temperature

void setup() {
Serial.begin(9600);
Wire.begin();

for(int i=0; i < NumberOfDevices; i++)
{
Wire.beginTransmission(TMP75_ID+i);
Wire.send(1);
// set default configuration, see data sheet for significance of config bits
Wire.send(0);
Wire.endTransmission();

Wire.beginTransmission(TMP75_ID+i);
Wire.send(0); // set pointer register to 0 (this is the 12-bit temperature)
Wire.endTransmission();

void loop()

for(int i=0; i < NumberOfDevices; i++)

{
byte id = TMP75_ID + i; // address IDs are consecutive
Wire.requestFrom(id, NumberOfFields);
tempHighByte = Wire.receive();
tempLowByte = Wire.receive();
Serial.print(id,HEX); // print the device address
Serial.print(": integer temperature is ");
Serial.print(tempHighByte, DEC);

13.5 Reading Temperature with a Digital Thermometer | 411

non

Serial.print(",");

// least significant 4 bits of LowByte is the fractional temperature
int t = word(tempHighByte, tempLowByte) / 16 ;

temperature = t / 16.0; // convert the value to a float
Serial.println(temperature);

delay(1000);

You can add more devices by changing the constant Number0OfDevices and wiring the
devices to use addresses that are consecutive, in this example starting from 0x49.

W

: The Alert line (pin 3) can be programmed to provide a signal when the
temperature reaches a threshold. See the data sheet for details if you
%1s want to use this feature.

See Also
The TMP75 data sheet: http://focus.ti.com/docs/prod/folders/print/tmp75.html

See Recipe 3.15 for more on the word function.

13.6 Driving Four 7-Segment LEDs Using Only Two Wires

Problem

You want to use a multidigit, 7-segment display, and you need to minimize the number
of Arduino pins required for the connections.

Solution

This recipe uses the Gravitech 7-segment display shield that has the SAA1064 12C to
7-segment driver from Philips (see Figure 13-11).

Figure 13-11. Gravitech 12C shield

412 | Chapter13: Communicating Using 12Cand SPI

http://focus.ti.com/docs/prod/folders/print/tmp75.html

This simple sketch lights each segment in sequence on all the digits:
J*
* I12C_7Segment sketch
*/
#include <Wire.h>
const byte LedDrive = 0x38; /* I2C address for 7-Segment */

int segment,decade;

void setup() {
Serial.begin(9600);
Wire.begin(); /* Join I2C bus */

Wire.beginTransmission(LedDrive);

Wire.send(0);

Wire.send(B01000111); // show digits 1 through 4, use maximum drive current
Wire.endTransmission();

}
void loop()
{
for (segment = 0; segment < 8; segment++)

Wire.beginTransmission(LedDrive);
Wire.send(1);
for (decade = 0 ; decade < 4; decade++)

byte bitValue = bit(segment);
Wire.send(bitValue);
}

Wire.endTransmission();
delay (250);

}

Discussion

The SAA1064 chip (using address 0x38) is initialized in setup. The value used config-
ures the chip to display four digits using maximum drive current (see the data sheet
section on control bits for configuration details).

The loop code lights each segment in sequence on all the digits. The Wire.send(1);
command tells the chip that the next received byte will drive the first digit and subse-
quent bytes will drive sequential digits.

Initially, a value of 1 is sent four times and the chip lights the “A” (top) segment on all
four digits. (See Chapter 2 for more on using the bit function.)

The value of segment is incremented in the for loop, and this shifts the bitValue to light
the next LED segment in sequence.

13.6 Driving Four 7-Segment LEDs Using Only Two Wires | 413

Each bit position corresponds to a segment of the digit. These bit position values can
be combined to create a number that will turn on more than one segment.

The following sketch will display a count from 0 to 9999. The array called
lookup[10] contains the values needed to create the numerals from 0 to 9 in a segment:

#include <Wire.h>
const byte LedDrive = 0x38; /* I2C address for 7-Segment */

// lookup array containing segments to light for each digit
const int lookup[10] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

int count;
void setup()
Wire.begin(); // join I2C bus (address optional for master)
// delay(500);
}
void loop()
{
Wire.beginTransmission(LedDrive);
Wire.send(0);
Wire.send(B01000111); // init the 7-segment driver - see data sheet

Wire.endTransmission();

// show numbers from 0 to 9999
for (count = 0; count <= 9999; count++)

displayNumber (count);
delay(10);

}

// function to display up to four digits on a 7-segment I2C display
void displayNumber(int number)

number = constrain(number, 0, 9999);
Wire.beginTransmission(LedDrive);
Wire.send(1);

for(int i =0; 1 < 4; i++)

byte digit = number % 10;

Wire.send(lookup[digit]);

}

number = number / 10;
}
Wire.endTransmission();

}

414 | Chapter13: Communicating Using 12Cand SPI

The function displayNumber is given a number to be displayed. The value to be sent for
each segment in the for loop is handled in two steps. First, the digit is determined by
taking the remainder after dividing the number by 10. This value (a digit from 0 through
9) is used to get the bit pattern from the lookup[] array to light the segments needed to
display the digit.

Each successive digit is obtained by looking at the remainder after dividing the number
by 10. When the remainder becomes 0, all digits have been sent.

You can suppress leading zeros (unnecessary zeros in front of digits) by changing the
displayNumber function as follows:

// function to display up to four digits on a 7-segment I2C display
void displayNumber(int number)

number = constrain(number, 0, 9999);
Wire.beginTransmission(LedDrive);
Wire.send(1);
for(int i =0; i < 4; i++)
{
byte digit = number % 10;
// this check will suppress leading zeros
if(number == 0 & i > 0)

Wire.send(0); // this suppresses leading zeros, it turns off all segments
else

Wire.send(lookup[digit]);

}

number = number / 10;
}
Wire.endTransmission();

}

The following statement checks if the value is 0 and it’s not the first (least significant)
digit:
if(number == 0 && i > 0)

If so, it sends a value of 0, which turns off all segments for that digit. This suppresses
leading zeros, but it displays a single zero if the number passed to the function was 0.

See Also
SAA1064 data sheet: http://www.nxp.com/documents/data_sheet/SAA1064_CNV.pdf

A shield is available that combines reading temperature, storing in EEPROM, and 7-
segment display: http://store.gravitech.us/7segmentshield. html

13.6 Driving Four 7-Segment LEDs Using Only Two Wires | 415

http://www.nxp.com/documents/data_sheet/SAA1064_CNV.pdf
http://store.gravitech.us/7segmentshield.html

13.7 Integrating an 12C Port Expander

Problem

You want to use more input/output ports than your board provides.

Solution

You can use an external port expander, such as the PCF8574A, which has eight input/
output pins that can be controlled using 12C. The sketch creates a bar graph with eight
LEDs. Figure 13-12 shows the connections.

COOUA000 AEI00000 PCFB574A
= DGTAL °= 12 Port Expander
Arduino TREE™
I\l SDA
0 Rl
. INT
o B "
oal 2%
——]

Figure 13-12. PCF8574A port expander driving eight LEDs

The sketch has the same functionality as described in Recipe 7.5, but it uses the 12C

port expander to drive the LEDs so that only two pins are required:
/*
* 12C_7segment
* Uses I2C port to drive a bar graph
* Turns on a series of LEDs proportional to a value of an analog sensor.
* see Recipe 7.5

*/
#include <Wire.h>
//address for PCF8574 with pins connected as shown in Figure 13-12

const int address = 0x38;
const int NbrLEDs = 8;

416 | Chapter13: Communicating Using 12Cand SPI

const int analogInPin = 0; // Analog input pin connected to the variable

resistor

int sensorValue = 0; // value read from the sensor

int ledlLevel = 0; // sensor value converted into LED 'bars'

int ledBits = 0; // bits for each LED will be set to 1 to turn on LED

void setup()

Wire.begin(); // set up Arduino I2C support
Serial.begin(9600);
}

void loop() {
sensorValue = analogRead(analogInPin); // read the analog in value
ledLevel = map(sensorValue, 0, 1023, 0, NbrLEDs); // map to number of LEDs
for (int led = 0; led < NbrLEDs; led++)

{
if (led < ledLevel) {
bitWrite(ledBits,led, HIGH); // turn on LED if less than the level

}

else {
bitWrite(ledBits,led, LOW); // turn off LED if higher than the level

}
// send the value to I2C

Wire.beginTransmission(address);
Wire.send(ledBits);
Wire.endTransmission();

}
delay(100);

Discussion

The resistors should be 220 ohms or more (see Chapter 7 for information on selecting
resistors).

The PCF8574A has a lower capacity for driving LEDs than Arduino. If
you need more capacity (refer to the data sheet for details) see Rec-
Ws" ipe 13.8 for a more appropriate device.

You can change the address by changing the connections of the pins marked “A0”,
“Al1”, and “A2”, as shown in Table 13-4.

13.7 Integrating an 12C Port Expander | 417

Table 13-4. Address values for PCF8574A

Ao A1 A2 Address
Gnd Gnd Gnd 0x38
+5V Gnd Gnd 0x39
Gnd +5V Gnd 0x3A
+5V +5V Gnd 0x3B
Gnd Gnd +5V 0x3C
+5V Gnd +5V 0x3D
+5V +5V Gnd 0x3E
+5V +5V +5V 0x3F

To use the port expander for input, read a byte from the expander as follows:

Wire.requestFrom(address, 1);
if(Wire.available())
{

data = Wire.receive();
Serial.println(data,BIN);

}

See Also
PCF8574 data sheet: http://www.nxp.com/documents/data_sheet/PCF8574.pdf

13.8 Driving Multidigit, 7-Segment Displays Using SPI

Problem

You want to control 7-segment displays, but you don’t want to use many pins.

Solution

This recipe provides similar functionality to Recipe 7.12, but it only requires three
output pins. The text here explains the SPT commands used to communicate with the
MAX7221 device. Figure 13-13 shows the connections:
*
SPI_Max7221_0019
*/
#include <SPI.h>

const int slaveSelect = 10; //pin used to enable the active slave

418 | Chapter13: Communicating Using 12Cand SPI

http://www.nxp.com/documents/data_sheet/PCF8574.pdf

const int numberOfDigits = 2; // change to match the number of digits wired up
const int maxCount = 99;

int count = 0;
void setup()

SPI.begin(); // initialize SPI
pinMode(slaveSelect, OUTPUT);
digitalWrite(slaveSelect,LOW); //select slave
// prepare the 7221 to display 7-segment data - see data sheet
sendCommand(12,1); // normal mode (default is shutdown mode);
sendCommand(15,0); // Display test off
sendCommand(10,8); // set medium intensity (range is 0-15)
sendCommand (11, number0fDigits); // 7221 digit scan limit command
sendCommand(9,255); // decode command, use standard 7-segment digits
digitalWrite(slaveSelect,HIGH); //deselect slave

}

void loop()
{

displayNumber(count);
count = count + 1;
if(count > maxCount)
count = 0;
delay(100);

// function to display up to four digits on a 7-segment display
void displayNumber(int number)

for(int i = 0; i < numberOfDigits; i++)

{
byte character = number % 10; // get the value of the rightmost decade
// send digit number as command, first digit is command 1
sendCommand(numberOfDigits-i, character);
number = number / 10;

}

}

void sendCommand(int command, int value)
{
digitalWrite(slaveSelect,LOW); //chip select is active low
//2 byte data transfer to the 7221
SPI.transfer(command);
SPI.transfer(value);
digitalWrite(slaveSelect,HIGH); //release chip, signal end transfer

13.8 Driving Multidigit, 7-Segment Displays Using SPI | 419

n:,f. 7
SN
R1 Dlgrtl J:’\ = I)ngnz
416153 11311:g<—
RESHE - ol
e Ao [9IfE R2]4]Ae]RoORIRI[ASIAT ‘| TGS]E]
RGnd Ezzté""‘ﬂv S e R m Tmoen
Gnd °°+59$££3333333b5333
D Vin b
U -
Al -a o
GM[?E S s z 2 MAX7221
I 13 5 =EEQ
12[]
N e @
10
0 =
e

Figure 13-13. Connections for MAX7221 with Lite-On LTD-6440G

Discussion

The MAX7221 needs a common cathode LED. The pinouts in Figure 13-13 are for a
Lite-On LTD-6440G (Jameco 2005366). This is a two-digit, 7-segment LED and the
corresponding segments for each digit must be connected together. For example, the
decimal point is on pin 4 for digit 1 and pin 9 for digit 2. The figure indicates that pins
4 and 9 are connected together and wired to the MAX7221 pin 22.

The MAX7221 can display up to eight digits (or an 8x8 matrix) and is controlled by
sending commands that determine which LED segment is lit.

After initializing the library, the SPI code is contained within the sendCommand function.
Because SPI uses the select slave wire connected to the chip, the chip is selected by
setting that pin LOW. All SPT commands are then received by that chip until it is set HIGH.
SPI.transfer is the library function for sending an SPI message. This consists of two
parts: a numerical code to specify which register should receive the message, followed
by the actual data. The details for each SPI device can be found in the data sheet.

Setup initializes the 7221 by sending commands to wake up the chip (it starts up in a
low-power mode), adjust the display intensity, set the number of digits, and enable
decoding for 7-segment displays. Each command consists of a command identifier (re-
ferred to as a register in the data sheet) and a value for that command.

420 | Chapter13: Communicating Using 12Cand SPI

For example, command (register) 10 is for intensity, so it sets medium intensity (the
intensity range is from 0 to 15):

sendCommand(10,8); // set medium intensity (range is 0-15)

Command numbers 1 through 8 are used to control the digits. The following code
would light the segments to display the number 5 in the first (leftmost) digit. Note that
digit numbers shown in the data sheet (and Figure 13-13) start from 0, so you must
remember that you control digit 0 with command 1, digit 1 with command 2, and so on:

sendCommand(1, 5); // display 5 on the first digit

You can suppress leading zeros by adding two lines of code in displayNumber that send
Oxf to the 7221 to blank the segments if the residual value is O:

void displayNumber(int number)

for(int i = 0; i < numberOfDigits; i++)
{

byte character = number % 10;

The next two lines are added to suppress leading zeros:

if(number == 0 & i > 0)
character = oxf; // value to blank the 7221 segments
sendCommand(numberOfDigits-i, character);
number = number / 10;
}
}

13.9 Communicating Between Two or More Arduino Boards

Problem

You want to have two or more Arduino boards working together. You may want to
increase the I/O capability or perform more processing than can be achieved on a single
board. You can use 12C to pass data between boards so that they can share the
workload.

Solution

The two sketches in this recipe show how 12C can be used as a communications link
between two or more Arduino boards. Figure 13-14 shows the connections.

13.9 Communicating Between Two or More Arduino Boards | 421

0

é’%&’%’_m@ Seeees e gﬁgg@m QR

DGMAL T | =% DIGITAL

AREF

‘ _ ‘ Arduino L ‘ Arduino

oy —
- g
- () EBRSSE ocmimwn My BmeEEe G@LA'EEG‘A

OO 5) (EE
~/ oooono [DDCTi] . goooon mgm;i}

Figure 13-14. Arduino as 12C master and slave

The master sends characters received on the serial port to an Arduino slave using 12C:

/*
* I2C_Master
* Echo Serial data to an I2C slave

*/

#include <Wire.h>
const int address = 4; //the address to be used by the communicating devices
void setup()

Wire.begin();

void loop()
{
char c;

if(Serial.available() > 0)

{
// send the data
Wire.beginTransmission(address); // transmit to device
Wire.send(c);
Wire.endTransmission();

}

}

The slave prints characters received over 12C to its serial port:

/*
* I2C_Slave

* monitors I2C requests and echoes these to the serial port
*

*/

422 | Chapter13: Communicating Using 12Cand SPI

#include <Wire.h>
const int address = 4; //the address to be used by the communicating devices
void setup()

Wire.begin(address); // join I2C bus using this address
Wire.onReceive(receiveEvent); // register event to handle requests

}
void loop()

// nothing here, all the work is done in receiveEvent

}

void receiveEvent(int howMany)

while(Wire.available() > 0)
{

char ¢ = Wire.receive(); // receive byte as a character
Serial.print(c); // echo

}

Discussion

This chapter focused on Arduino as the I2C master accessing various 12C slaves. Here
a second Arduino acts as an 12C slave that responds to requests from another Arduino.
Techniques covered in Chapter 4 for sending bytes of data can be applied here. The
Wire library does not have a print method, but it’s not difficult to add this.

The following sketch creates an object named I2CDebug that sends its output over I2C.
Using this with the I2C slave sketch shown previously enables you to print data on the
master without using the serial port (the slave’s serial port is used to display the output):
/*
* I2C Master
* Sends serial data to an I2C slave

*/

#include <Wire.h>

const int address = 4; //the address to be used by the communicating devices
const int sensorPin = 0; // select the analog input pin for the sensor
int val; // variable to store the sensor value

class I2CDebugClass : public Print
{
private:
int I2CAddress;
byte count;
void write(byte c);

13.9 Communicating Between Two or More Arduino Boards | 423

public:
I2CDebugClass();
boolean begin(int id);

|5

I2CDebugClass: :I12CDebugClass()

{

}

boolean I2CDebugClass::begin(int id)

{
I2CAddress = id; // save the slave's address
Wire.begin(); // join I2C bus (address optional for master)
return true;

}
void I2CDebugClass::write(byte c)
{
if(count == 0)
// here if the first char in the transmission
Wire.beginTransmission(I2CAddress); // transmit to device
}
Wire.send(c);
// if the I2C buffer is full or an end of line is reached, send the data
// BUFFER_LENGTH is defined in the Wire library
if(++count >= BUFFER_LENGTH || ¢ == '\n")
// send data if buffer full or newline character
Wire.endTransmission();
count = 0;
}
}

I2CDebugClass I2CDebug; // the I2C print object
void setup()
Wire.begin();
Serial.begin(9600);
}
void loop()
{
val = analogRead(sensorPin); // read the voltage on the pot (val ranges
from 0 to 1023)

Serial.println(val);
I2CDebug.println(val);

See Also

Chapter 4 has more information on using the Arduino print functionality.

424 | Chapter13: Communicating Using 12Cand SPI

CHAPTER 14
Wireless Communication

14.0 Introduction

Arduino’s ability to interact with the world is fantastic, but sometimes you might want
to communicate with your Arduino from a distance, without wires, and without the
overhead of a full TCP/IP network connection. This chapter begins with a recipe for
simple wireless modules for applications where low cost is the primary requirement,
but most of the recipes focus on the versatile XBee wireless modules.

XBee provides flexible wireless capability to the Arduino, but that very flexibility can
be confusing. This chapter provides examples ranging from simple “wireless serial port
replacements” through to mesh networks connecting multiple boards to multiple
Sensors.

A number of different XBee modules are available. The most popular are the XBee
802.15.4 (also known as XBee Series 1) and XBee ZB Series 2. Series 1 is easier to use
than Series 2, but it does not support mesh networks. See http://www.digi.com/support/
kbase/kbaseresultdetl.jsp?id=2213.

14.1 Sending Messages Using Low-Cost Wireless Modules

Problem

You want to transmit data between two Arduino boards using simple, low-cost wireless
modules.

Solution

This recipe uses simple transmit and receive modules such as the SparkFun
WRL-08946 and WRL-08770.

Wire the transmitter as shown in Figure 14-1 and the receiver as in Figure 14-2.

425

http://www.digi.com/support/kbase/kbaseresultdetl.jsp?id=2213
http://www.digi.com/support/kbase/kbaseresultdetl.jsp?id=2213

@O R

Transmitter

puy
Be(
N\

[Yreser

W3

5

Gnd
£ Ynd
[Yvin

[
oO=ZTTcCc O = >

Figure 14-1. Simple wireless transmitter using VirtualWire

13 Recei
" eceiver

NP

Ip
puy

puy
wy

o S
pug
neg

-—153]

o= —"C O o >

|-

Figure 14-2. Simple wireless receiver using Virtual Wire

426 | Chapter14: Wireless Communication

The transmit sketch sends a simple text message to the receive sketch, which echoes
the text to the Serial Monitor. The transmit and receive sketches use the VirtualWire
library written by Mike McCauley to provide the interface to the wireless hardware.
The library can be downloaded from http://www.open.com.au/mikem/arduino/Virtual
Wire-1.5.zip:
/*

SimpleSend

This sketch transmits a short text message using the VirtualWire library

connect the Transmitter data pin to Arduino pin 12

*/
#include <VirtualWire.h>
void setup()

// Initialize the IO and ISR
vw_setup(2000); // Bits per sec

void loop()

send("hello");
delay(1000);

void send (char *message)

vw_send((uint8 t *)message, strlen(message));
vw_wait tx(); // Wait until the whole message is gone

The receive sketch also uses the VirtualWire library:
/*
SimpleReceive
This sketch displays text strings received using VirtualWire
Connect the Receiver data pin to Arduino pin 11
*/

#include <VirtualWire.h>

byte message[VW_MAX_MESSAGE_LEN]; // a buffer to hold the incoming messages
byte msglLength = VW_MAX_MESSAGE_LEN; // the size of the message

void setup()

Serial.begin(9600);
Serial.println("Ready");

// Initialize the IO and ISR
vw_setup(2000); // Bits per sec
vw_rx_start(); // Start the receiver

14.1 Sending Messages Using Low-Cost Wireless Modules | 427

http://www.open.com.au/mikem/arduino/VirtualWire-1.5.zip
http://www.open.com.au/mikem/arduino/VirtualWire-1.5.zip

void loop()
{
if (vw_get message(message, &msglength)) // Non-blocking

Serial.print("Got: ");
for (int i = 0; i < msglength; i++)

Serial.write(message[i]);
}
Serial.println();
}

}

Discussion

The VirtualWire library defaults to pin 12 for transmit and pin 11 for receive, but see
the documentation link at the end of this recipe if you want to use different pins.
Setup initializes the library. The loop code simply calls a send function that calls the
library vw_send and waits for the message to be transmitted.

The receive side initializes the library receive logic and then waits in loop for the mes-
sage. vw_get_message will return true if a message is available, and if so, each character
in the message is printed to the Serial Monitor.

The VirtualWire library handles the assembly of multiple bytes into packets, so sending
binary data consists of passing the address of the data and the number of bytes to send.

The sending sketch that follows is similar to the transmit sketch in this recipe’s Solution,
but it fills the message buffer with binary values from reading the analog input ports
using analogRead. The size of the buffer is the number of integers to be sent multiplied
by the number of bytes in an integer (the six analog integer values take 12 bytes because
each int is two bytes):
/*
SendBinary
Sends digital and analog pin values as binary data using VirtualWire library

See SendBinary in Chapter 4
*/

#include <VirtualWire.h>
const int numberOfAnalogPins = 6; // how many analog pins to read
int data[numberOfAnalogPins]; // the data buffer

const int dataBytes = numberOfAnalogPins * sizeof(int); // the number of bytes
in the data buffer

void setup()
{

// Initialize the IO and ISR
vw_setup(2000); // Bits per sec

428 | Chapter14: Wireless Communication

void loop()

int values = 0;
for(int i=0; i <= numberOfAnalogPins; i++)

// read the analog ports
data[i] = analogRead(i); // store the values into the data buffer

}

send((byte*)data, dataBytes);

delay(1000); //send every second
}

void send (byte *data, int nbrOfBytes)

viw_send(data, nbrOfBytes);
vw_wait tx(); // Wait until the whole message is gone

The sizeof operator is used to determine the number of bytes in an int.

The receive side waits for messages, checks that they are the expected length, and con-
verts the buffer back into the six integer values for display on the Serial Monitor:
/*
ReceiveBinary
This sketch receives six integer values as binary data
Connect the Receiver data pin to Arduino pin 11
*/

#include <VirtualWire.h>

/*
SendBinary
Sends digital and analog pin values as binary data using VirtualWire library
See SendBinary in Chapter 4
*/

#include <VirtualWire.h>

const int numberOfAnalogPins = 6; // how many analog integer values to receive
int data[numberOfAnalogPins]; // the data buffer

// the number of bytes in the data buffer
const int dataBytes = numberOfAnalogPins * sizeof(int);

byte msglength = dataBytes;

void setup()

14.1 Sending Messages Using Low-Cost Wireless Modules | 429

Serial.begin(9600);
Serial.println("Ready");

// Initialize the IO and ISR
vw_set_ptt_inverted(true); // Required for DR3100
vi_setup(2000); // Bits per sec

vw_rx_start(); // Start the receiver

}

void loop()

{
if (vw_get_message((byte*)data, &msglLength)) // Non-blocking
{

Serial.println("Got: ");
if(msgLength == dataBytes)
{

for (int i = 0; 1 < numberOfAnalogPins; i++)

Serial.print("pin ");

Serial.print(i);

Serial.print("=");

Serial.println(data[i]);
}

}

else

{
Serial.print("unexpected msg length of ");
Serial.println(msglLength);

}
Serial.println();
}
}

The Serial Monitor will display the analog values on the sending Arduino:

Got:

pin 0=1023

pin 1=100

pin 2=227

pin 3=303

pin 4=331

pin 5=358
Bear in mind that the maximum buffer size for VirtualWire is 30 bytes long (the con-
stant VW_MAX_MESSAGE_LEN is defined in the library header file).

Wireless range can be up to 100 meters or so depending on supply voltage and antenna
and is reduced if there are obstacles between the transmitter and the receiver.

Also note that the messages are not guaranteed to be delivered, and if you get out of
range or there is excessive radio interference some messages could get lost. If you need
a guaranteed wireless delivery mechanism, the ZigBee API used in recipes at the end of
this chapter is a better choice, but these inexpensive modules work well for tasks such

430 | Chapter14: Wireless Communication

as displaying the status of Arduino sensors—each message contains the current sensor
value to display and any lost messages get replaced by messages that follow.

See Also

A technical document on the VirtualWire Library can be downloaded from http://www
.open.com.au/mikem/arduino/Virtual Wire.pdf.

Data sheets for the transmitter and receiver modules can be found at http://'www.spark
fun.com/datasheets/Wireless/General/MO-SAWR.pdf and http://www.sparkfun.com/da
tasheets/Wireless/General/MO-RX3400.pdf.

14.2 Connecting Arduino to a ZigBee or 802.15.4 Network

Problem
You’d like your Arduino to participate in a ZigBee or 802.15.4 network.

802.15.4 is an IEEE standard for low-power digital radios that are implemented in
products such as the inexpensive XBee modules from Digi International. ZigBee is an
alliance of companies and also the name of a standard maintained by that alliance.
ZigBee is based on IEEE 802.15.4 and is a superset of it. ZigBee is implemented in many
products, including certain XBee modules from Digi.

W

- Only XBee modules that are listed as ZigBee-compatible, such as the
ﬁ:\ XBee ZB modules, are guaranteed to be ZigBee-compliant. That being
T Wy said, you can use a subset of the features (IEEE 802.15.4) of ZigBee even

" with the older XBee Series 1 modules. In fact, all the recipes here will
work with the Series 1 modules.

Troubleshooting XBee

If you have trouble getting your XBees to talk, make sure they both have the same type
of firmware (e.g., XB24-ZB under the Modem: XBEE setting shown in Figure 14-5),
and that they are both running the most current version of the firmware (the Version
setting shown in Figure 14-5). For a comprehensive set of XBee troubleshooting tips,
see Robert Faludi’s “Common XBee Mistakes” at http://www.faludi.com/projects/com
mon-xbee-mistakes/. For extensive details on working with XBees, see his book, Building
Wireless Sensor Networks, published by O’Reilly.

Solution

Obtain two or more XBee modules, configure them to communicate with one another,
and hook them up to at least one Arduino. You can connect the other XBee modules
to another Arduino, a computer, or an analog sensor (see Recipe 14.4).

14.2 Connecting Arduino to a ZigBee or 802.15.4 Network | 431

http://www.open.com.au/mikem/arduino/VirtualWire.pdf
http://www.open.com.au/mikem/arduino/VirtualWire.pdf
http://www.sparkfun.com/datasheets/Wireless/General/MO-SAWR.pdf
http://www.sparkfun.com/datasheets/Wireless/General/MO-SAWR.pdf
http://www.sparkfun.com/datasheets/Wireless/General/MO-RX3400.pdf
http://www.sparkfun.com/datasheets/Wireless/General/MO-RX3400.pdf
http://www.faludi.com/projects/common-xbee-mistakes/
http://www.faludi.com/projects/common-xbee-mistakes/
http://oreilly.com/catalog/9780596807740/
http://oreilly.com/catalog/9780596807740/

If you connect the Arduino to the XBee and run this simple sketch, the Arduino will
reply to any message it receives by simply echoing what the other XBee sends it:
/*
XBeeEcho
Reply with whatever you receive over the serial port
*

void setup()

Serial.begin(9600);
}

void loop()
{

while (Serial.available()) {
Serial.write(Serial.read()); // reply with whatever you receive

}
}

Figure 14-3 shows the connection between an Adafruit XBee Adapter and Arduino.
Notice that the Arduino’s RX is connected to the XBee’s TX and vice versa.

= o 0D P WD Ly S P ey
2 = RTS O

0O0000CO 0o0o000d
=5 =]

DIGITAL
™
. RX B+
Arduino - Adafruit 5y e
oo XBee (s O
Adapter 6d B
‘ E‘ RST O

OO 55 eroran

Figure 14-3. Connecting an Arduino to an XBee using the Adafruit XBee Adapter

,—_ If you are using a different adapter that does not have an on-board volt-
“5"@ age regulator, it will be sending voltage directly into the XBee. If this is
the case, you must connect the 3V3 pin from the Arduino to the adapt-

er’s power supply, or you risk burning out your XBee.

432 | Chapter14: Wireless Communication

With the XBees configured and connected to a computer and/or Arduino, you can send
messages back and forth.

You must disconnect the Arduino from the XBee before you attempt to
*t% program the Arduino. This is because Arduino uses pins 0 and 1 for

programming, and the signals will get crossed if anything else, such as
an XBee, is connected to those pins.

Discussion

To configure your XBees, plug them into an XBee adapter such as the Adafruit XBee
Adapter kit ($10; Maker Shed part number MKAD13, Adafruit 126) and use a USB-to-
TTL serial adapter such as the TTL-232R ($20; Maker Shed TTL232R, Adafruit 70) to
connect the adapter to a computer.

N
3 You should purchase at least two adapters (and if needed, two cables),
p p
:‘:\ which will allow you to have two XBees connected to your computer at
~ Qs the same time. These same adapters can be used to connect an XBee to
) p

" an Arduino.

You could also use an all-in-one XBee USB adapter, such as the Parallax XBee USB
Adapter ($20; Adafruit 247, Parallax 32400) or the SparkFun XBee Explorer USB ($25;
SparkFun WRL-08687).

Figure 14-4 shows the Adafruit XBee Adapter and the SparkFun XBee Explorer USB
with Series 2 XBee modules connected.

Series 2 configuration

For the initial configuration of Series 2 XBees, you will need to plug your XBees into a
Windows computer (the configuration utility is not available for Mac or Linux). Plug
only one into a USB port for now. The TTL-232R and Parallax XBee USB Adapter both
use the same USB-to-serial driver as the Arduino itself, so you should not need to install
an additional driver.

1. Open Device Manager (press Windows-R, type devmgmt.msc, and press Enter), ex-
pand the Ports (COM & LPT) section, and take note of the number of the USB
Serial Port the XBee you just plugged in is connected to. Exit Device Manager.

2. Run the X-CTU application (http://'www.digi.com/support/productdetl.jsp’pid=
3352), then select your serial port, and press Test/Query to ensure that X-CTU
recognizes your XBee. (If not, see the support document at http://www.digi.com/
support/kbase/kbaseresultdetl.jsp?id=2103.)

3. Switch to the Modem Configuration tab, and click Read. X-CTU will determine
which model of XBee you are using as well as the current configuration.

14.2 Connecting Arduino to a ZigBee or 802.15.4 Network | 433

http://www.digi.com/support/productdetl.jsp?pid=3352
http://www.digi.com/support/productdetl.jsp?pid=3352
http://www.digi.com/support/kbase/kbaseresultdetl.jsp?id=2103
http://www.digi.com/support/kbase/kbaseresultdetl.jsp?id=2103

Figure 14-4. Two XBees, one connected to an Adafruit adapter and the other connected to a SparkFun
adapter

4.
5.
6.

Under Function Set, choose ZIGBEE COORDINATOR AT (not API).
Click Show Defaults.

Change the PAN ID setting from 0 to 1234 (or any hexadecimal number you want,
as long as you use the same PAN ID for all devices on the same network), as shown
in Figure 14-5.

7. Click Write.

8.

Click the Terminal tab.

Next, leave X-CTU running and leave that XBee plugged in. Plug your second XBee
into a different serial port. Repeat the preceding steps (in step 2, you will be starting
up a second copy of X-CTU), but instead of choosing ZIGBEE COORDINATOR AT
in step 4, choose ZIGBEE ROUTER AT. On this XBee, you should also set Channel
Verification (JV) to 1 to make sure it will confirm that it’s on the right channel, which
makes its connection to the coordinator more reliable.

W
\
o If you have two computers running Windows, you can connect each
s XBee into a separate computer.
[
15)

With both XBees connected and two copies of X-CTU showing their Terminal tab, type
into either Terminal window. You’ll see whatever you type into one XBee appear on

434 | Chapter14: Wireless Communication

rE_I_I X-CTU [COM4] = S |

Remote Configuration

PC Settings] Range Test] Teminal Modem Configuration]

todem Parameters and Firmeane Parameter Wiew Profile Wersiohs

Read | WdTite | Restore | Clear Screen Save Derrieed) fem
[Always update firmware | Shaw Defaults Laad Ve
Modem: <BEE Furction 5 et Wergian
[#Bz47E | |ZIGBEE COORDINATOR AT x| Jaom0 |
B3 Netwarking -

..... = NREESTRY - — I

----- B [1FFE]SC - Scan Channels

----- B (2150 - Scan Duration

----- B (025 - ZigBee Stack Profile

----- B (FFIMJ - Mode Join Time

----- B OF - Operating PaN 1D

----- B 0 - Operating 16-bit PAN 1D

----- B CH - Operating Channel

----- B MC - Mumber of Remaining Children
B2 Addressing

----- B 5H - Serial Mumber High

----- B 5L - Serial Mumber Low

----- B MY - 16-bit Metwork Address

----- B (01 DH - Destination Address High

----- B (FFFF) DL - Destination Sddress Low
----- B (1M - Mode |dentifier

----- B (1E]MH - Maimum Hops

----- B (1) EH - Broadcast Radius

----- B [FF14F - Manp-to-Ome Foute Broadcast Time -
Set the PAM [Personal Area Metwork] 1D for the network [ZigB ee extended PAN 1D, Yalid

range is 0 - 0xFFFFFFFFFFFFFFFF. Altermatively, set [D=0for the coordinator to choose &
randomn Pk 1D,

1

RANGE:0-0<FFFFFFFFFFFFFFFF

COM4 | 3600 8-N-1 FLOW:MOMNE XB24-7B Ver2270
S ————————————

Figure 14-5. Configuring the XBee

the Terminal of the other one. You’ve set up your first simple XBee Personal Area
Network (PAN).

Series 1 configuration

For Series 1 XBees, you can use a Mac or a PC running Linux or Windows. However,
if you wish to update the firmware on the XBees, you will need to use the X-CTU utility
described in “Series 2 configuration” on page 433.

Using a serial terminal program such as CoolTerm or PuTTY, connect to the XBee’s
USB serial port at 9,600 bits per second.

14.2 Connecting Arduino to a ZigBee or 802.15.4 Network | 435

W
og You can download CoolTerm for Windows and Mac at http://freeware
"‘:‘ .the-meiers.org/. PUTTY is available for Windows and Linux at http:/
TN U8y www.chiark.greenend.org.uk/~sgtatham/putty/download.html. You may
" also be able to install PuTTY under Linux using your Linux system’s
package manager. For example, on Ubuntu, PuTTY is available in the

Universe repository with apt-get install putty.

To determine the serial port assigned to your XBee under Windows, see step 1 in
“Series 2 configuration” on page 433. To determine the serial port under Mac OS X,
open the Mac OS X Terminal window (located in /Applications/Utilities) and type this
command: 1s /dev/tty.usbserial-*. On Linux, open an xterm or similar console ter-
minal and type 1s /dev/ttyUSB*.

If you see more than one result here, unplug all USB serial devices except the XBee you
wish to configure and type the command again. You should only see one result.

You’ll see output like this on the Mac:
/dev/tty.usbserial-A700eYwl

And like this on Linux:
/dev/ttyUSBO
The result you see is the filename that corresponds to your XBee’s USB serial port.
Connect to this port in your serial terminal program. To connect to your XBee using
CoolTerm (Windows or Mac), follow these steps:
1. Run CoolTerm.
2. Click the Options button in the toolbar.

3. Select the USB serial port (such as tty.usbserial-A700eYw1 on a Mac or COMS8 on
a PC). Make sure it is set to a baud rate of 9,600, 8 data bits, no parity, 1 stop bit
(these are the defaults).

4. Check the box labeled Local Echo.
5. Click OK.

6. Click the Save button in the toolbar and save your session settings.

7. In future sessions, you can skip steps 2 through 6 by clicking Open and selecting
the settings file you saved.

8. Click the Connect button in the toolbar.

To connect to your XBee using PuTTY (Windows or Linux), follow these steps:

1. Run PuTTY.
2. Click Serial under Connection Type.

3. Type the name of your serial port in the Serial Line field (such as /dev/ttyUSBO on
Linux or COM7 on Windows). Make sure Speed is set to 9600 (the default).

436 | Chapter14: Wireless Communication

http://freeware.the-meiers.org/
http://freeware.the-meiers.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

. On the left side of the window, under Category, click Terminal.

. Under Local Echo, choose Force On.

. Under “Set various terminal options,” choose Implicit LF in Every CR.
. On the left side of the window, under Category, click Session.

. Type a name for the session, such as “XBee 17, then click Save.

O 0 N O L b

. In future sessions, you can skip steps 2 through 8 by double-clicking the saved
session name. This will open the serial connection.

Now that you’re connected, configure the first XBee with the following AT commands.
You will need to type +++ and wait a second to get the XBee’s attention (it will respond
with “OK”):

ATMY1234

ATDL5678

ATDHO

ATIDO
ATWR

Keep your serial terminal up and running so that you can continue to type commands
into it. Next, plug in the second XBee, and follow the earlier instructions to connect to
it with PuTTY or CoolTerm (to open a new PuTTY window, you can simply launch
the program again; you can start a new CoolTerm window with File-New). Then,
configure the second XBee with these commands:

ATMY5678

ATDL1234

ATDHo

ATIDO
ATWR

Now you can type commands into the Serial Terminal window for one XBee and they
will appear in the Serial Terminal window for the other XBee (and vice versa).

The ATMY command sets the identifier for an XBee. ATDL and ATDH set the low byte and
the high byte of the destination XBee. ATID sets the network ID (it needs to be the same
for XBees to talk to one another) and ATWR saves the settings into the XBee so that it
remembers the settings even if you power it down and back up.

Talking to the Arduino

Now that you’ve got your XBee modules configured, close the serial terminal that was
connected to it, and disconnect the XBee from your computer. Next, program your
Arduino with the code shown in this recipe’s Solution, and connect the XBee to your
Arduino as shown in Figure 14-3. When you type characters into the serial terminal
program connected to your other XBee, you’ll see the characters echoed back (if you
type a, you’ll see aa).

14.2 Connecting Arduino to a ZigBee or 802.15.4 Network | 437

See Also
Recipe 14.3; Recipe 14.4; Recipe 14.5

14.3 Sending a Message to a Particular XBee

Problem

You want to configure which node your message goes to from your Arduino sketch.

Solution
Send the AT commands directly from your Arduino sketch:
/*

XBeeMessage
Send a message to an XBee using its address

*/
boolean configured = false;
boolean configureRadio() {

// put the radio in command mode:
Serial.print("+++");

String ok response = "OK\r"; // the response we expect.

// Read the text of the response into the response variable
String response = String("");
while (response.length() < ok_response.length()) {
if (Serial.available() > 0) {
response += (char) Serial.read();
}
}

// If we got the right response, configure the radio and return true.

if (response.equals(ok_response)) {
Serial.print("ATDH0013A200\r"); // destination high-REPLACE THIS
Serial.print("ATDL403B9E1E\r"); // destination low-REPLACE THIS
Serial.print("ATCN\r"); // back to data mode
return true;

} else {
return false; // This indicates the response was incorrect.

}

}

void setup () {
Serial.begin(9600); // Begin serial
configured = configureRadio();

}

void loop () {

438 | Chapter14: Wireless Communication

if (configured) {
Serial.print("Hello!");
delay(3000);

else {
delay(30000); // Wait 30 seconds
configureRadio(); // try again
}
}

Discussion

Although the configurations in Recipe 14.2 work for two XBees, they are not as flexible
when used with more than two.

For example, consider a three-node network of Series 2 XBees, with one XBee config-
ured with the COORDINATOR AT firmware and the other two with the ROUTER
AT firmware. Messages you send from the coordinator will be broadcast to the two
routers. Messages you send from each router are sent to the coordinator.

The Series 1 configuration in that recipe is a bit more flexible, in that it specifies explicit
destinations. But by configuring the devices with AT commands and then writing the
configuration, you effectively hardcode the destination addresses in the firmware.

This solution instead lets the Arduino code send the AT commands to configure the
XBees on the fly. The heart of the solution is the configureRadio() function. It sends
the +++ escape sequence to put the XBee in command mode, just as the Series 1 con-
figuration did at the end of Recipe 14.2. After sending this escape sequence, the Arduino
sketch waits for the OK response before sending these AT commands:

ATDH0013A200

ATDL403B9E1E
ATCN

N

In your code, you must replace 00134200 and 403B9E1E with the high and
low addresses of the destination radio.

The first two commands are similar to what is shown in the Series 1 configuration at
the end of Recipe 14.2, but the numbers are longer. That’s because the example shown
in that recipe’s Solution uses Series 2—style addresses. As you saw in Recipe 14.2, you
can specify the address of a Series 1 XBee with the ATMY command, but in a Series 2
XBee, each module has a unique address that is embedded in each chip. You can look
up the high (ATDH) and low (ATDL) portions of the serial number using X-CTU, as shown
in Figure 14-6. The numbers are also printed on the label underneath the XBee.

The ATCN command exits command mode; think of it as the reverse of what the +++
sequence accomplishes.

14.3 Sending a Message to a Particular XBee | 439

p
BB x-cTu [cOM4] =T

Remote Configuration
PC Settings I Range Testl Teminal Modem Configuration |
—Modern Parameters and Firmware Parameter View Prafile Wersiong

Fead Wirite | Hestorel Clear Screen Save Denmlees) fer

[~ always update firmware Show Defaults Load SRS .
Maoder: #EEE Function Set Wersion
[xp24z8 ~| |2IGBEE ROUTER AT RAFERY
B3 Netwarking -

----- B 1234) 10 - PN 1D I
----- B (1FFE]I5C - Scan Charnels

----- B (3150 - Scan Duration

----- B (0125 - ZigBee Stack Profile

----- B [FFI M - Mode Join Time

----- B (0] kv - Mebwark watchdog Timeout
----- B (010 - Channel Yerification

----- B [0].N - Jain Motification

----- B (1234) OF - Operating P&N 1D

----- B [9C900 01 - Operating 16-bit PAN 1D
----- B [C1CH - Operating Channel

m

----- B [403B3E1E] 5L - Serial Mumber Low

----- B (5020] MY - 16-bit Network Address

----- B (0] DH - Destination Addresz High

----- B (0] DL - Destination Address Low

----- B (1Ml - Node [dentifier il

Read higf-1 32 bits of modems unique IEEE E4-bit Extended Address.

COM4 | 9600 8-M-1 FLOW'NONE XB24-7B Ver2270

Figure 14-6. Looking up the high and low serial numbers in X-CTU

See Also
Recipe 14.2

14.4 Sending Sensor Data Between XBees

Problem

You want to send the status of digital and analog pins or control pins based on com-
mands received from XBee.

440 | Chapter14: Wireless Communication

Solution

Hook one of the XBees (the transmitting XBee) up to an analog sensor and configure
it to read the sensor and transmit the value periodically. Connect the Arduino to an
XBee (the receiving XBee) configured in API mode and read the value of the API frames
that it receives from the other XBee.

Discussion

XBees have a built-in analog-to-digital converter (ADC) that can be polled on a regular
basis. The XBee can be configured to transmit the values (between 0 and 1023) to other
XBees in the network. The configuration and code differ quite a bit between Series 2
and Series 1 XBees.

Series 2 XBees

Using X-CTU (see “Series 2 configuration” on page 433 in Recipe 14.2), configure the
transmitting XBee with the ZIGBEE ROUTER AT (not API) function set and the fol-
lowing settings:

PAN ID: 1234 (or a number you pick, as long as you use the same one for both
XBees)

Channel Verification (JV): 1 (this makes sure the router will confirm that it’s on
the right channel when talking to the coordinator)

Destination Address High (DH): the high address (SH) of the other XBee, usually
13A200

Destination Address Low (DL): the low address (SL) of the other XBee

Under /O Settings, AD0/DIO0 Configuration (DO): 2

Under I/O Settings»Sampling Rate (IR): 64 (100 milliseconds in hex)

W N
3 You can look up the high (ATDH) and low (ATDL) portions of the serial
“‘:\ number using X-CTU, as shown earlier in Figure 14-6. The numbers are

W' also printed on the label underneath the XBee.

Configure the receiving XBee with the ZIGBEE COORDINATOR API (not AT) func-
tion set with the following settings:

PAN ID: 1234 (or a number you pick, as long as you use the same one for both
XBees)

Destination Address High (DH): the high address (SH) of the other XBee, usually
13A200

Destination Address Low (DL): the low address (SL) of the other XBee

Wire up the transmitting XBee to the sensor, as shown in Figure 14-7. The value of R1
should be double whatever your potentiometer is (if you are using a 10K pot, use a 20K

14.4 Sending Sensor Data Between XBees | 441

resistor). This is because the Series 2 XBees’ analog-to-digital converters read a range
of 0 to 1.2 volts, and R1 reduces the 3.3V to stay below 1.2 volts.

+3.3V
< 3.3V powerin [L \:’ u Analog In 0 or Digital /0 0
s R1 ' O [AnalogIn 1or Digital /0 1
o RO [0 Analog In2or Digital 1/0 2
Digital /012 | [J [0 Analog In3or Digital 1/03
Reset | [B RTS
pwmo | [J Association Indicator
Digial/0 11 | (3 X Bees {3 | VREF (notin Series 2 Xbees)
S 10K Reserved | [[on/Sleep Indicator
Em— DR s
> Pot Ground B Digital /04
Ground

Figure 14-7. Connecting a Series 2 XBee to an analog sensor

Next, load the following sketch onto the Arduino, and wire the transmitting XBee to
the Arduino as shown in Recipe 14.2. If you need to reprogram the Arduino, remember
to disconnect it from the XBee first:
/*
XBeeAnalogReceive
Read an analog value from an XBee API frame and set the brightness

of an LED accordingly.
*/

#define LEDPIN 9
void setup() {
Serial.begin(9600);
pinMode (LEDPIN, OUTPUT);
void loop() {
if (Serial.available() »= 21) { // Wait until we have a mouthful of data
if (Serial.read() == 0x7E) { // Start delimiter of a frame
// Skip over the bytes in the API frame we don't care about

for (int i = 0; 1 < 18; i++) {
Serial.read();

442 | Chapter14: Wireless Communication

}

// The next two bytes are the high and low bytes of the sensor reading
int analogHigh = Serial.read();

int analoglow = Serial.read();

int analogValue = analoglow + (analogHigh * 256);

// Scale the brightness to the Arduino PWM range
int brightness = map(analogValue, 0, 1023, 0, 255);

// Light the LED
analogWrite(LEDPIN, brightness);

Series 1 XBees

Using a terminal program as described in “Series 1 configuration” on page 435 in
Recipe 14.2, send the following configuration commands to the transmitting XBee:

ATRE

ATMY1234

ATDL5678

ATDHO

ATIDO

ATDO2

ATIR64

ATWR

Next, send the following configuration commands to the receiving XBee:

ATRE
ATMY5678
ATDL1234
ATDHO
ATIDO
ATWR

Both XBees
ATRE resets the XBee to factory defaults. The ATMY command sets the identifier for
an XBee. ATDL and ATDH set the low byte and the high byte of the destination XBee.
ATID sets the network ID (it needs to be the same for XBees to talk to one another).
ATWR saves the settings into the XBee so that it remembers the settings even if you
power it down and back up.

Transmitting XBee
ATDO2 configures pin 20 (analog or digital input 0) as an analog input; ATIR64 tells
the XBee to sample every 100 (64 hex) milliseconds and send the value to the XBee
specified by ATDL and ATDH.

14.4 Sending Sensor Data Between XBees | 443

Wire up the transmitting XBee to the sensor, as shown in Figure 14-8.

X

10K
= Pot

+3.3V

3.3V powerin
X

RX

Digital I/0 12

Reset

PWMo

Digital I/0 11

Reserved

DIR

Ground

B

I|—ecooooooad—-

Analog In 0 or Digital I/0 0
Analog In 1 or Digital 1/0 1
Analog In 2 or Digital 1/0 2
Analog In 3 or Digital 1/0 3
RTS

Association Indicator

VREF
On/Sleep Indicator
[

Digital 1/0 4

Figure 14-8. Series 1 XBee connected to an analog sensor

Next, load the following sketch onto the Arduino, and wire the transmitting XBee to
the Arduino as shown in Recipe 14.2. If you need to reprogram the Arduino, disconnect

it from the XBee first:
/*

XBeeAnalogReceiveSeriesi

Read an analog value from an XBee API frame and set the brightness

of an LED accordingly.
*/

const int ledPin = 9;
void setup() {

Serial.begin(9600);
pinMode(ledPin, OUTPUT);

configureRadio(); // check the return value if you need error handling

}

boolean configureRadio() {

// put the radio in command mode:

Serial.flush();
Serial.print("+++");

444 | Chapter14: Wireless Communication

delay(100);
String ok_response = "OK\r"; // the response we expect.

// Read the text of the response into the response variable
String response = String("");
while (response.length() < ok_response.length()) {
if (Serial.available() > 0) {
response += (char) Serial.read();

}

// If we got the right response, configure the radio and return true.
if (response.equals(ok_response)) {
Serial.print("ATAP1\r"); // Enter API mode
delay(100);
Serial.print("ATCN\tr"); // back to data mode
return true;
} else {
return false; // This indicates the response was incorrect.
}
}

void loop() {
if (Serial.available() >= 14) { // Wait until we have a mouthful of data
if (Serial.read() == ox7E) { // Start delimiter of a frame

// Skip over the bytes in the API frame we don't care about
for (int i = 0; 1 < 10; i++) {
Serial.read();

}

// The next two bytes are the high and low bytes of the sensor reading
int analogHigh = Serial.read();

int analoglow = Serial.read();

int analogValue = analoglow + (analogHigh * 256);

// Scale the brightness to the Arduino PWM range
int brightness = map(analogValue, 0, 1023, 0, 255);

// Light the LED
analoghirite(ledPin, brightness);
}
}
}

See Also
Recipe 14.2

14.4 Sending Sensor Data Between XBees | 445

14.5 Activating an Actuator Connected to an XBee

Problem

You want to tell an XBee to activate a pin, which could be used to turn on an actuator
connected to it, such as a relay or LED.

Solution

Configure the XBee connected to the actuator so that it will accept instructions from
another XBee. Connect the other XBee to an Arduino to send the commands needed
to activate the digital I/O pin that the actuator is connected to.

Discussion

The XBee digital/analog I/O pins can be configured for digital output. Additionally,
XBees can be configured to accept instructions from other XBees to take those pins
high or low. In Series 2 XBees, you’ll be using the Remote AT Command feature. In
Series 1 XBees, you can use the direct I/O, which creates a virtual wire between XBees.

Series 2 XBees

Using X-CTU (see “Series 2 configuration” on page 433), configure the receiving XBee
with the ZIGBEE ROUTER AT (not API) function set and the following settings:

PAN ID: 1234 (or a number you pick, as long as you use the same one for both
XBees)

Channel Verification (JV): 1 (this makes sure the router will confirm that it’s on
the right channel when talking to the coordinator)

Destination Address High (DH): the high address (SH) of the other XBee, usually
13A200

Destination Address Low (DL): the low address (SL) of the other XBee

Under I/O Settings, AD1/DIO1 Configuration (D1): 4 (digital output, low)

W
S You can look up the high (ATDH) and low (ATDL) portions of the serial
:‘:‘ number using X-CTU, as shown earlier in Figure 14-6. The numbers are
W' also printed on the label underneath the XBee.

(N

Configure the transmitting XBee with the ZIGBEE COORDINATOR API (not AT)
function set with the following settings:

PAN ID: 1234 (or a number you pick, as long as you use the same one for both
XBees)

Destination Address High (DH): the high address (SH) of the other XBee, usually
13A200

446 | Chapter14: Wireless Communication

Destination Address Low (DL): the low address (SL) of the other XBee

Wire up the receiving XBee to an LED, as shown in Figure 14-9.

+3.3V
3.3V power in [Analog In 0 or Digital /0 0
™ Analog In 1 or Digital /0 1 ee—
a RX Analog In 2 or Digital /0 2
He Digital 17012 | [} [} | Analogn 3 or Digital /0 3
Reset | [RTS
k PwMo | [B Association Indicator
vl 1011 |3 XBee L3 vher tnotinSeres 2xbees)
R“e"nﬁﬂ 8 8 On/Sleep Indicator
220 as
Ground O] pigital /04
Ohm
Ground

Figure 14-9. Connecting an LED to an XBee’s digital I/O pin 1

Next, load the following sketch onto the Arduino, and wire the transmitting XBee to
the Arduino as shown in Recipe 14.2. If you need to reprogram the Arduino, remember
to disconnect it from the XBee first. This sketch sends a Remote AT command (ATD14
or ATD15) that sets the state of pin 1 (ATD1) alternatingly on (digital out high, 5) and off
(digital out low, 4):
/*
XBeeActuate
Send a Remote AT command to activate a digital pin on another XBee.

*/

const byte frameStartByte = Ox7E;
const byte frameTypeRemoteAT = 0x17;
const byte remoteATOptionApplyChanges = 0x02;

void setup() {
Serial.begin(9600);
}

void loop()
{

toggleRemotePin(1);
delay(3000);
toggleRemotePin(0);
delay(2000);

14.5 Activating an Actuator Connected to an XBee | 447

byte sendByte(byte value) {
Serial.print(value, BYTE);
return value;

}

void toggleRemotePin(int value) { // 0 = off, nonzero = on

byte pin_state;
if (value) {
pin_state = 0x5;
} else {
pin_state = 0x4;

}

sendByte(frameStartByte); // Begin the API frame

// High and low parts of the frame length (not counting checksum)
sendByte(0x0);
sendByte(0x10);

long sum = 0; // Accumulate the checksum

sum += sendByte(frameTypeRemoteAT); // Indicate this frame contains a
Remote AT command

sum += sendByte(0x0); // frame ID set to zero for no reply

// The
// Use

sum
sum
sum
sum
sum
sum
sum
sum

+=

// The
// Use

sum
sum

sum

+=
+=

+=

// The

sum
sum

+=
+=

// The

sum

+=

following 8 bytes indicate the ID of the recipient.
OXFFFF to broadcast to all nodes.

sendByte(0x0);

sendByte(0x0);

sendByte(0x0);

sendByte(0x0);

sendByte(0x0);

sendByte(0x0);

sendByte(OxFF);

sendByte(OxFF);

following 2 bytes indicate the 16-bit address of the recipient.
OXFFFE to broadcast to all nodes.

sendByte(OxFF);

sendByte(OxFF);

sendByte(remoteATOptionApplyChanges); // send Remote AT options
text of the AT command

sendByte('D");

sendByte('1');

value (ox4 for off, 0x5 for on)
sendByte(pin_state);

// Send the checksum
sendByte(OXFF - (sum & OXFF));

448 | Chapter14: Wireless Communication

delay(10); // Pause to let the microcontroller settle down if needed

Series 1 XBees

Using a terminal program as described in “Series 1 configuration” on page 435, send
the following configuration commands to the transmitting XBee (the one you’ll connect
to the Arduino):

ATRE

ATMY1234

ATDL5678

ATDHO

ATIDO

ATD13

ATICFF

ATWR

Next, send the following configuration commands to the receiving XBee:

ATRE
ATMY5678
ATDL1234
ATDHO
ATIDO
ATD14
ATIUO
ATIA1234
ATWR

Both XBees
ATRE resets the XBee to factory defaults. The ATMY command sets the identifier for
an XBee. ATDL and ATDH set the low byte and the high byte of the destination XBee.
ATID sets the network ID (it needs to be the same for XBees to talk to one another).
ATWR saves the settings into the XBee so that it remembers the settings even if you
power it down and back up.

Transmitting XBee
ATICFF tells the XBee to check every digital input pin and send their values to the
XBee specified by ATDL and ATDH. ATD13 configures pin 19 (analog or digital input
1) to be in digital input mode. The state of this pin will be relayed from the trans-
mitting XBee to the receiving XBee.

Receiving XBee
ATIU1 tells the XBee to not send the frames it receives to the serial port. ATIA1234
tells it to accept commands from the other XBee (whose MY address is 1234).
ATD14 configures pin 19 (analog or digital input 1) to be in low digital output mode
(off by default).

Wire up the transmitting XBee to the Arduino, as shown in Figure 14-10.

Next, wire the receiving XBee to an Arduino, as shown in Recipe 14.2. Note that instead
of sending AT commands over the serial port, we’re using an electrical connection to

14.5 Activating an Actuator Connected to an XBee | 449

take the XBee’s pin high. The two 10K resistors form a voltage divider that drops the
Arduino’s 5V logic to about 2.5 volts (high enough for the XBee to recognize, but low
enough to avoid damaging the XBee’s 3.3V logic pins).

+3.3V
. Analog In 0 or Digital 1/0 0
Wpey 1B E3 | nalog n 1 o Digital 01
RO Analog In 2 or Digital 10 2
Digital 1012 | OO Analog|n 3 or Digital 110 3 10K
Reset | [RTS
PWMo | O [| Association Indicator Ohm
Digital 11011 | [XBees [[VREF (not in Series 2 Xbees)
Reserved | [0O OnfSIeep Indicator .
Arduino Pin 2
Mmia O
Ground [r O |grtal 1104 10K
Ground Ohm

Figure 14-10. Connecting the Arduino to XBee’s digital I/O pin 1

Next, load the following sketch onto the Arduino. This sketch takes the XBee’s digital
I/O pin 1 alternatingly on (digital out high, 5) and off (digital out low, 4). Because the
transmitting XBee is configured to relay its pin states to the receiving XBee, when its
pin 1 changes state the receiving XBee’s pin 1 changes as well:
/*
XBeeActuateSeries1
Activate a digital pin on another XBee.

*/

const int ledPin = 9;
const int xbeePin = 2;

void setup() {
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(xbeePin, OUTPUT);
}

void loop()
{

digitalWrite(xbeePin, HIGH);
delay(3000);
digitalWrite(xbeePin, LOW);
delay(3000);

}

See Also
Recipe 14.2

450 | Chapter14: Wireless Communication

CHAPTER 15
Ethernet and Networking

15.0 Introduction

Want to share your sensor data? Let other people take control of your Arduino’s ac-
tions? Your Arduino can communicate with a broader world over Ethernet and net-
works. This chapter describes the many ways you can use Arduino with the Internet.
It has examples that demonstrate how to build and use web clients and servers and it
shows how to use the most common Internet communication protocols with
Arduino.

The Internet allows a client (e.g., your web browser) to request information from a
server (a web server or other Internet service provider). This chapter contains recipes
showing how to make an Internet client that retrieves information from a service such
as Google or Yahoo! Other recipes in this chapter show how Arduino can be an Internet
server that provides information to clients using Internet protocols and act as a web
server that creates pages for viewing in web browsers.

The Arduino Ethernet library supports a range of methods (protocols) that enable your
sketches to be an Internet client or a server. The Ethernet library uses the suite of
standard Internet protocols, and most of the low-level plumbing is hidden. Getting
your clients or servers up and running and doing useful tasks will require some under-
standing of the basics of network addressing and protocols, and you may want to con-
sult one of the many references available online or one of these introductory books:

* Head First Networking by Al Anderson and Ryan Benedetti (O’Reilly)

* Network Know-How: An Essential Guide for the Accidental Admin by John Ross
(No Starch Press)

* Windows NT TCP/IP Network Administration by Craig Hunt and Robert Bruce
Thompson (O’Reilly)

* Making Things Talk by Tom Igoe (O’Reilly)

451

http://oreilly.com/catalog/9780596521561/
http://oreilly.com/catalog/9781565923775/
http://oreilly.com/catalog/0636920010920/

Here are some of the key concepts in this chapter. You may want to explore them in
more depth than is possible here:

Ethernet
This is the low-level signaling layer providing basic physical message-passing ca-
pability. Source and destination addresses for these messages are identified by a
Media Access Control (MAC) address. Your Arduino sketch defines a MAC ad-
dress value that must be unique on your network.

TCP and IP

Transmission Control Protocol (TCP) and Internet Protocol (IP) are core Internet
protocols built above Ethernet. They provide a message-passing capability that
operates over the global Internet. TCP/IP messages are delivered through unique
IP addresses for the sender and receiver. A server on the Internet uses a numeric
label (address) that no other server will have so that it can be uniquely identified.
This address consists of four bytes, usually represented with dots separating the
bytes (e.g., 64.233.187.64 is an IP address used by Google). The Internet uses the
Directory Name System (DNS) service to translate the common service name (http:
/lwww.google.com) to the numeric IP address, but the standard Arduino Ethernet
library does not include the DNS capability. Recipe 15.3 shows how to use a third-
party DNS library to add this capability to your sketches.

Local IP addresses
If you have more than one computer connected to the Internet on your home net-
work using a broadband router or gateway, each computer probably uses a local
IP address that is provided by your router. The local address is created using a
Dynamic Host Configuration Protocol (DHCP) service in your router. The Arduino
Ethernet library does not include a DHCP service, so you either need to select a
local IP address or use a third-party library that adds DHCP. Most of the recipes
in this chapter show a user-selected TP address that you may need to modify to suit
your network. Recipe 15.2 shows how the IP address can be obtained automatically
using DHCP.

Web requests from a web browser and the resultant responses use Hypertext Transfer
Protocol (HTTP) messages. For a web client or server to respond correctly, it must
understand and respond to HTTP requests and responses. Many of the recipes in this
chapter use this protocol, and referring to one of the references listed earlier for more
details will help with understanding how these recipes work in detail.

Web pages are usually formatted using Hypertext Markup Language (HTML). Al-
though it’s not essential to use HTML if you are making an Arduino web server, as
Recipe 15.9 illustrates, the web pages you serve can use this capability.

Extracting data from a web server page intended to be viewed by people using a web
browser can be a little like finding a needle in a haystack because of all the extraneous
text, images, and formatting tags used on a typical page. This task is simplified in the
recipes here with a library written for this book, called TextFinder. It is available from

452 | Chapter15: Ethernetand Networking

http://www.google.com
http://www.google.com

the Arduino Playground and on the website for this book. TextFinder extracts infor-
mation from a stream of data. It is used with the Arduino Ethernet library to find
particular sequences of characters and to get strings and numeric values.

Web interchange formats have been developed to enable reliable extraction of web data
by computer software. XML and JSON are two of the most popular formats, and
Recipe 15.5 shows an example of how to do this using Arduino.

15.1 Setting Up the Ethernet Shield

Problem

You want to set up the Ethernet shield to use a hardcoded IP address.

Solution

This sketch is based on the Ethernet client example sketch distributed with Arduino.
Check the documentation for your network to ensure that the Arduino IP address (the
value of the ip variable) is valid for your network:

#if ARDUINO > 18

#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192, 168 1, 177 }; // change to a valid address for your network
byte server[] = { 64, 233, 187, 99 }; // Google

// see text for more on IP addressing

Client client(server, 80);
void setup()

Ethernet.begin(mac, ip); // start ethernet using the mac and IP address
Serial.begin(9600); // start the serial library:
delay(1000); // give the ethernet hardware a second to initialize

Serial.println("connecting...");

if (client.connect()) {
Serial.println("connected");
client.println("GET /search?q=arduino HTTP/1.0"); // the HTTP request
client.println();
} else {
Serial.println("connection failed");

15.1 Setting Up the Ethernet Shield | 453

http://oreilly.com/catalog/9780596802486/

void loop()

if (client.available()) {
char ¢ = client.read();
Serial.print(c); // echo all data received to the Serial Monitor

if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
for(5;)
}
}

Discussion

This sketch performs a Google search using the word “arduino”. Its purpose is to pro-
vide working code that you can use to verify that your network configuration is suitable
for the Arduino Ethernet shield.

There are four addresses that must be set up correctly for the sketch to successfully
connect and display the results of the search on the Serial Monitor:

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };

The MAC address uniquely identifies your Ethernet shield. Every network device must
have a different MAC address, and if you use more than one Arduino shield on your
network, each must use a different address. If you have a single Ethernet shield, you
don’t need to change this:

byte ip[] = { 192, 168 1, 177 }; // change this to a valid address for your
network

The IP address is used to identify something that is communicating on the Internet and
must also be unique on your network. The address consists of four bytes, and the range
of valid values for each byte depends on how your network is configured. IP addresses
are usually expressed with dots separating the bytes—for example, 192.168.1.177. In
all the Arduino sketches, commas are used instead of dots because the bytes are stored
in an array (see Recipe 2.4).

If your network is connected to the Internet using a router or gateway, you may need
to provide the IP address of the gateway when you call the ethernet.begin function.
You can find the address of the gateway in the documentation for your router/gateway.
Add a line after the IP and server addresses at the top of the sketch with the address of
your gateway:

byte gateway[] ={ 192, 168, 1, 254 }; // add this if needed by your router or
gateway

454 | Chapter15: Ethernetand Networking

And change the first line in setup to include the gateway address in the startup values
for Ethernet:

Ethernet.begin(mac, ip, gateway);
The server address consists of the 4-byte IP address of the server you want to connect
to—in this case, Google. Server IP addresses change from time to time, so you may

need to use the ping utility of your operating system to find a current IP address for the
server you wish to connect to:

byte server[] = { 64, 233, 187, 99 }; // Google

L)
)

The line at the top of the sketch that includes <SPI.h> is required for
Arduino releases starting at 0019, but not for earlier versions. The code
s in the sketch here uses a conditional check to enable it to work in any
" version. See Recipe 17.6 for more on conditional defines.

See Also

The web reference for getting started with the Arduino Ethernet shield is at http:/
arduino.cc/en/Guide/ArduinoEthernetShield.

15.2 Obtaining Your IP Address Automatically

Problem

The IP address you use for the Ethernet shield must be unique on your network and
you would like this to be allocated automatically. You want the Ethernet shield to
obtain an IP address from a DHCP server.

Solution

This s the sketch from Recipe 15.1 with the bolded lines added to use the DHCP library:

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include "Dhcp.h" // add this for the DHCP library

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OXFE, OXED };
// IP addressing lines removed
byte server[] = { 209,85,229,104 }; // Google

Client client(server, 80);

15.2 Obtaining Your IP Address Automatically | 455

http://arduino.cc/en/Guide/ArduinoEthernetShield
http://arduino.cc/en/Guide/ArduinoEthernetShield

void setup()

Serial.begin(9600);
if(Dhcp.beginWithDHCP(mac) == 1) // begin method returns 1 if successful

Serial.println("got IP address, connecting...");
delay(5000);

else

{

Serial.println("unable to acquire ip address!");
while(true)
5 // do nothing
}

if (client.connect()) {
Serial.println("connected");
client.println("GET /search?q=arduino HTTP/1.0");
client.println();

} else {
Serial.println("connection failed");

}

}

void loop()
{

if (client.available()) {
char c = client.read();
Serial.print(c);

}

if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
for(;;)

5
}
}

Discussion

The library distributed with the Arduino release does not support DHCP (at the time
of this writing), but you can obtain a third-party library from this book’s website or
from http://blog.jordanterrell.com/post/Arduino-DHCP-Library-Version-04.aspx. Copy
the contents of the download into the Arduino\hardware\libraries\Ethernet folder.

The highlighted lines show the differences from the sketch in Recipe 15.1. There is no
IP or gateway address variable; these are acquired from your DHCP server when the
sketch starts.

456 | Chapter15: Ethernetand Networking

http://blog.jordanterrell.com/post/Arduino-DHCP-Library-Version-04.aspx

If you want to see the values returned from the DHCP server on the Serial Monitor, use
the following setup function:

void setup()
{

Serial.begin(9600);
if(Dhcp.beginWithDHCP(mac) == 1) // begin method returns 1 if successful

byte buffer[6];
Serial.println("ip acquired...");

// show the values returned from the DHCP server
Dhcp.getlocallp(buffer);

Serial.print("ip address: ");
printArray(&Serial, ".", buffer, 4, 10);

Dhcp.getSubnetMask(buffer);
Serial.print("subnet mask: ");
printArray(&Serial, ".", buffer, 4, 10);

Dhcp.getGatewayIp(buffer);
Serial.print("gateway ip: ");
printArray(8Serial, ".", buffer, 4, 10);

Dhcp.getDhcpServerIp(buffer);
Serial.print("dhcp server ip: ");
printArray(8Serial, ".", buffer, 4, 10);

Dhcp.getDnsServerIp(buffer);
Serial.print("dns server ip: ");
printArray(8Serial, ".", buffer, 4, 10);

delay(5000);
}

else

{

Serial.println("unable to acquire ip address!");
while(true)
; // do nothing

if (client.connect()) {
Serial.println("connected");
client.printIn("GET /search?q=arduino HTTP/1.0");
client.println();

} else {
Serial.println("connection failed");

}

And add this function to the end of the sketch to produce the formatted output that is
sent to the Serial Monitor:

void printArray(Print *output, char* delimeter, byte* data, int len, int base)

char buf[10] = {0, 0, 0, 0O, O, O, O, 0O, O, O};

15.2 Obtaining Your IP Address Automatically | 457

for(int i = 0; 1 < len; i++)

if(i I= 0)
output->print(delimeter);

output->print(itoa(data[i], buf, base));
output->println();

Running this sketch will display the IP configuration information received from your
DHCP server on the Serial Monitor:

IP address: 192.168.1.177

subnet mask: 255.255.255.0

gateway IP: 192.168.1.254

DHCP server IP: 192.168.1.254
DNS server IP: 192.168.1.254

15.3 Resolving Hostnames to IP Addresses (DNS)

Problem

You want to use a server name—for example, yahoo.com—rather than a specific IP
address. Web providers often have a range of IP addresses used for their servers and a
specific address may not be in service when you need to connect.

Solution

You can use DNS to look up a valid IP address for the name you provide. This example
uses DNS code from Matt Robertson at http://kegger.googlecode.com/files/Ethernet.zip:
/*
* WebClientDNS sketch
*/

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include "Ethernet_dns.h"
#include "Dns.h" // uses DNS library from Matt Robertson

byte mac[] = {OxDE, OxAD, OxBE, OXEF, OXFE, OXED };
byte ip[] = {192, 168, 1, 177 }; // change to a valid address for your network

byte gateway[] ={192, 168, 1, 254 }; // add this if you use a router or gateway
// see text for more on IP addressing
byte subnet[] ={255, 255, 255, 0 }; // this defines the subnet address

458 | Chapter15: Ethernetand Networking

http://kegger.googlecode.com/files/Ethernet.zip

byte ipBuffer[6]; // this will get the server IP address from DNS

Client client(ipBuffer, 80);
DnsClass Dns;

//Client client(ipBuffer, server, 80);
void setup()
{

Serial.begin(9600);
Ethernet.begin(mac, ip, gateway, subnet);

//// Do DNS Lookup

Serial.println("getting server address");

Dns.init("google.com", ipBuffer); //Buffer has IP address of the DNS server
Dns.resolve();

int results;
while(!(results=Dns.finished())) ; //wait for DNS to resolve the name

if(results != 1){
Serial.print("DNS Error code: ");
Serial.print(results,DEC);
while(true)
; // do nothing
}

delay(5000);

if (client.connect()) {
Serial.println("connected");
client.println("GET /search?q=arduino HTTP/1.0");
client.println();

else {
Serial.println("connection failed");

}

void loop()
{

if (client.available()) {
char ¢ = client.read();
Serial.print(c);

if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
for(;;)

J

15.3 Resolving Hostnames to IP Addresses (DNS)

| 459

Discussion

This code is similar to the code in Recipe 15.1; it does a Google search for “arduino”.
But in this version it is not necessary to provide the Google IP address—it is obtained
through a request to the Internet DNS service.

The request is achieved through these function calls:

Dns.init("google.com", ipBuffer); //Buffer contains the IP address of the DNS
server

Dns.resolve();

while(!(results=Dns.finished())) ; //wait for DNS to resolve the name

The Dns.Init function is called with two parameters: the server (host) name to look up
and the character array to hold the IP address if the lookup is successful. Dns.resolve
sends the request, and Dns.finished returns the status of the reply. Here are the values
that can be returned from Dns. finished:

1 = success

2 = No DNS records found

3 = timeout
greater than 16 is an error code provided by the DNS server

The sketch checks the value returned from Dns.finished—if it is 1, the variable
ipBuffer will contain a valid IP address; otherwise, it is an error that is printed to the
Serial Monitor.

You can view the IP address using the following code:

Dns.getIP(ipBuffer); //buffer now contains the IP address for server given in
Dns.Init()

Serial.print("Google address: ");

printIp(ipBuffer);

The printIp function is:

void printIp(byte *rawData)
{

for(int i=0; i < 4; i++){
Serial.print(rawData[i],DEC);
if(i < 3)
Serial.print('.");

Serial.println();

}

You can use DNS and DHCP together. Here is the sketch with DHCP functionality

added (see Recipe 15.2):
/*
* WebClientDHCP_DNS sketch
*/
#if ARDUINO > 18
#tinclude <SPI.h> // needed for Arduino versions later than 0018
#endif

460 | Chapter15: Ethernetand Networking

#include "Ethernet_dns.h"
#include "Dhcp.h" // add this for the DHCP library
#include "Dns.h" // uses DNS library from Matt Robertson

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };

byte ipBuffer[6];
Client client(ipBuffer, 80);
DnsClass Dns;

//Client client(ipBuffer, server, 80);
void setup()
{

Serial.begin(9600);
if(Dhcp.beginWithDHCP(mac) == 1) // begin method returns 1 if successful
{

Serial.println("got IP address");
//// Do DNS Lookup
Serial.println("getting server address");
Dns.init("google.com", ipBuffer); //Buffer has IP address of the DNS server
Dns.resolve();

int results;
while(!(results=Dns.finished())) ; //wait for DNS to resolve the name

if(results != 1){
Serial.print("DNS Error code: ");
Serial.print(results,DEC);
while(true)

5 // do nothing

}
delay(5000);

else
{
Serial.println("unable to acquire ip address!");
while(true)
5 // do nothing

if (client.connect()) {
Serial.println("connected");
client.println("GET /search?q=arduino HTTP/1.0");
client.println();

} else {
Serial.println("connection failed");

}

}

void loop()
{

if (client.available()) {
char ¢ = client.read();
Serial.print(c);

}

15.3 Resolving Hostnames to IP Addresses (DNS) | 461

if (!client.connected()) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
for(;;)

>

15.4 Requesting Data from a Web Server

Problem

You want Arduino to get data from a web server. For example, you want to find and
use specific values returned from a web server.

Solution

This sketch uses Google Calculator to convert 50 kilometers to miles. It sends the query
“what+is+50+km-+in+mi” and prints the result to the Serial Monitor:
/*

* SimpleClientwFinder sketch
*

*/

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192,168,1,177 };

//byte gateway[] ={ 192, 168, 1, 254 };

//byte subnet[] ={ 255, 255, 255, 0 };

byte server[] = { 173,194,33,104 }; // Google

Client client(server, 80);
TextFinder finder(client);

int result; // the result of the google calculation
void setup()
{

Ethernet.begin(mac, ip);

Serial.begin(9600);

delay(2000);
Serial.println("connecting...");

462 | Chapter15: Ethernetand Networking

}

void loop()

if (client.connect()) {
Serial.print("connected... ");
client.println("GET /search?hl=en8q=what+is+50+km+in+mi HTTP/1.1");
client.println();
} else {
Serial.println("connection failed");

if (client.connected()) {
if(finder.find("50 kilometers")){
if(finder.find("=")){
result = finder.getValue();
Serial.println(result);
}
}

else

Serial.println("result not found");
client.stop();
delay(10000); // check again in 10 seconds

}

else {
Serial.println();
Serial.println("not connected");
client.stop();
delay(1000);

}

Discussion

The sketch assumes the results will be returned in bold (using the HTML tag)
followed by the value given in the query and the word kilometers.

The searching is done using the TextFinder library described in this chapter’s intro-
duction. The find method searches through the received data and returns true if it finds
the target string. The code looks for text associated with the reply. In this example, it
tries to find “50 kilometers” using this line:

if(finder.find("50 kilometers")){

finder is used again to find the equals sign (=) that precedes the numerical value of the
result.

The result is obtained using the getvalue method and is printed to the Serial Monitor.

getValue returns an integer value; if you want to get a floating-point value, use get
Float instead:

Float floatResult = finder.getFloat();
Serial.println(floatResult);

15.4 Requesting Data from a Web Server | 463

If you want your searches to be robust, you need to look for a unique tag that will only
be found preceding the data you want. This is easier to achieve on pages that use unique
tags for each field, such as this example that gets the Google stock price from Google

Finance and writes the value to analog output pin 0 and to the Serial Monitor:
/*
* WebClientGoogleFinance sketch
* get the stock value for google and write to analog pin.
*/
#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192, 168,1,177 };

byte gateway[] ={ 192, 168, 1, 254 };

byte subnet[] ={ 255, 255, 255, 0 };

byte server[] = {209,85,229,147 }; // google
Client client(server, 80);

TextFinder finder(client);
float value;

void setup()
{

Ethernet.begin(mac, ip, gateway, subnet);
Serial.begin(9600);
delay(2000);

void loop()
{

Serial.print("Connecting...");

if (client.connect()) {
client.println("GET //finance?q=google HTTP/1.0"); // todo
client.println("User-Agent: AVR ethernet");
client.println();

}

else

{

Serial.println("connection failed");

if (client.connected()) {
if(finder.find(""))

finder.find(">"); // seek past the next '>'
value = finder.getFloat();
Serial.println(value);

analoghrite(0, value);

}

464 | Chapter15: Ethernetand Networking

else
Serial.print("Could not find field");

else {
Serial.println("Disconnected");

client.stop();
client.flush();
delay(5000); // 5 seconds between each connect attempt

}

These examples use the GET command to request a specific page. Some web requests
need data to be sent to the server within the body of the message, because there is more
data to be sent than can be handled by the GET command. These requests are handled
using the POST command. Here is an example of POST that uses the Babel Fish language
translation service to translate text from Italian into English:
/*
* WebClient Babelfish sketch

* Uses Post to get data from a web server
*

*/
#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OXFE, OXED };
byte ip[] = { 192, 168,1,177 };

byte gateway[] ={ 192, 168, 1, 254 };

byte subnet[] ={ 255, 255, 255, 0 };

byte server[] = {66,196,80,202 }; //babelfish.yahoo.com

Client client(server, 80);

// the text to translate
char * transText = "trtext=Ciao+mondo+da+Arduino.81lp=it _en";

char buffer [31]; // room for 30 characters and the terminating null
TextFinder finder(client);
void setup()
{
Ethernet.begin(mac, ip, gateway, subnet);
Serial.begin(9600);
delay(3000);

void loop()
{

postPage("/translate txt", transText);

15.4 Requesting Data from a Web Server | 465

delay(5000);

void postPage(char *webPage, char *parameter){

if (client.connect()) {
client.print("POST ");
client.print(webPage);
client.println(" HTTP/1.0");
client.println("Content-Type: application/x-www-form-urlencoded");
client.println("Host: babelfish.yahoo.com");
client.print("Content-Length: ");
client.println(strlen(parameter));
client.println();
client.println(parameter);

}
else {
Serial.println(" connection failed");

}

if (client.connected()) {
finder.find("<div id=\"result\">");
finder.getString(">", "<" ,buffer, sizeof(buffer));
Serial.println(buffer);

}
else {
Serial.println("Disconnected");

client.stop();
client.flush();
}

Sites such as Google Weather and Google Finance generally keep the tags used to
identify fields unchanged. But if some future update to a site does change the tags you
are searching for, your sketch will not function correctly until you correct the search
code. A more reliable way to extract data from a web server is to use a formal protocol,
such as XML or JSON. The next recipe shows how to extract information from a site
that uses XML.

15.5 Requesting Data from a Web Server Using XML

Problem

You want to retrieve data from a site that publishes information in XML format. For
example, you want to use values from specific fields in one of the Google API services.

Solution

This sketch retrieves the weather in London from the Google Weather site. It uses the
Google XML API:

/*
* SimpleClientGoogleWeatherDHCP

466 | Chapter15: Ethernetand Networking

* gets xml data from http://www.google.com/ig/api?weather=1ondon,uk
* reads temperature from field: <temp_f data="66" />
* writes temperature to analog output port.

*/

#if ARDUINO > 18
#tinclude <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>

#include "Dhcp.h" //from: http://blog.jordanterrell.com/post/
Arduino-DHCP-Library-Version-04.aspx

#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte server[] = {209,85,229,104 }; // Google

Client client(server, 80);
TextFinder finder(client);
void setup()

{

Serial.begin(9600);

if(Dhcp.beginWithDHCP(mac) == 1) { // begin method returns 1 if successful
Serial.println("got IP address, connecting...");
delay(5000);

else {
Serial.println("unable to acquire ip address!");
while(true)
5 // do nothing

void loop()
{

if (client.connect()) {

// get google weather for London
client.println("GET /ig/api?weather=london,uk HTTP/1.0");
client.println();

else {
Serial.println(" connection failed");

if (client.connected()) {
// get temperature in fahrenheit (use field "<temp c data=\"" for Celsius)
if(finder.find("<temp_f data="))

int temperature = finder.getValue();

analoghrite(3, temperature); // write value to analog port
Serial.print("Temperature is "); // and echo it to the serial port
Serial.println(temperature);

15.5 Requesting Data from a Web Server Using XML | 467

else
Serial.print("Could not find temperature field");

else {
Serial.println("Disconnected");

client.stop();
client.flush();
delay(60000); // wait a minute before next update

}

Each field is preceded by a tag, and the one indicating the temperature in Fahrenheit
on Google Weather is "<temp_f data=".

On this site, if you want the temperature in Celsius you would look for the tag "<temp c
data=".

You will need to consult the documentation for the page you are interested in to find
the relevant tag for the data you want.

You select the page through the information sent in your GET statement. This also de-
pends on the particular site, but in the preceding example, the city is selected by the
text after the equals sign following the GET statement. For example, to change the lo-
cation from London to New York, change:

client.println("GET /ig/api?weather=london,uk HTTP/1.0"); // weather for London

to:

client.printIn("GET /ig/api?weather=New York,NY HTTP/1.0"); // weather for
New York

You can use a variable if you want the location to be selected under program control:

char *cityString[4] = { "London", "New%20York", "Rome", "Tokyo"};
int city;

void loop()
{

city = random(4); // get a random city

if (client.connect()) {
client.print("GET /ig/api?weather=");
client.print(cityString[city]); // print one of 4 random cities
client.println(" HTTP/1.0");
client.println();

}

else {
Serial.println(" connection failed");

}

if (client.connected()) {
// get temperature in fahrenheit (use field "<temp c data=\"" for Celsius)
if(finder.find("<temp f data="))

int temperature = finder.getValue();
analoghrite(3, temperature); // write value to the analog port
Serial.print(cityString[city]);

468 | Chapter15: Ethernetand Networking

Serial.print(" temperature is "); // and echo it to the serial port
Serial.println(temperature);

}

else
Serial.println("Could not find temperature field");

// the remainder of the code is the same as the previous sketch

W8
A

Information sent in URLs cannot contain spaces, which is why New
York is written as “New%20York”. The encoding to indicate a space is
1 %20. Your browser does the encoding before it sends a request, but on
" Arduino you must translate spaces to %20 yourself.

15.6 Setting Up an Arduino to Be a Web Server

Problem

You want Arduino to serve web pages. For example, you want to use your web browser
to view the values of sensors connected to Arduino analog pins.

Solution

This is the standard Arduino WebServer example sketch distributed with Arduino that
shows the value of the analog input pins. This recipe explains how this sketch works
and how it can be extended:

/¥

* Web Server
*

* A simple web server that shows the value of the analog input pins.
*/
#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif
#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192, 168, 1, 177};

Server server(80);

void setup()

{
Ethernet.begin(mac, ip);
server.begin();

void loop()

{

Client client = server.available();

15.6 Setting Up an Arduino to Be a Web Server | 469

if (client) {
// an http request ends with a blank line
boolean current_line_is_blank = true;
while (client.connected()) {
if (client.available()) {
char ¢ = client.read();
// if we've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so we can send a reply
if (c == "\n' 83 current_line_is _blank) {
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();

// output the value of each analog input pin

for (int i = 0; 1 < 6; i++) {
client.print("analog input ");
client.print(i);
client.print(" is ");
client.print(analogRead(i));
client.println("
");

}

break;

}

if (c == "\n") {
// we're starting a new line
current_line is blank = true;

} else if (c = "\r'") {
// we've gotten a character on the current line
current line is blank = false;

}
}

// give the web browser time to receive the data
delay(1);
client.stop();
}
}

Discussion

As discussed in Recipe 15.1, all of the sketches using the Ethernet library need a unique
MAC address and IP address. The IP address you assign in this sketch determines the
address of the web server. In this example, typing 192.168.1.177 into your browser’s
address bar should display a page showing the values on analog input pins 0 through
6 (see Chapter 5 for more on the analog ports).

As described in this chapter’s introduction, 192.168.1.177 is a local address that is only
visible on your local network. If you want to expose your web server to the entire
Internet, you will need to configure your router to forward incoming messages to
Arduino. The technique is called port forwarding and you will need to consult the
documentation for your router to see how to set this up. (For more on port forwarding

470 | Chapter15: Ethernetand Networking

in general, see SSH, The Secure Shell: The Definitive Guide by Daniel J. Barrett, Richard
E. Silverman, and Robert G. Byrnes [O’Reilly].)

Configuring your Arduino Ethernet board to be visible on the Internet
*t% makes the board accessible to anyone with the IP address. The Arduino

Ethernet library does not offer secure connections, so be careful about
the information you expose.

The two lines in setup initialize the Ethernet library and configure your web server to
the IP address you provide. The loop waits for and then processes each request received
by the web server:

Client client = server.available();

The client class here is actually the web server—it processes messages for the IP address
you gave the server.

if (client) tests that the client has been successfully started.

while (client.connected()) tests if the web server is connected to a client making a
request.

client.available() and client.read() check if data is available, and read a byte if it
is. This is similar to Serial.available(), discussed in Chapter 4, except the data is
coming from the Internet rather than the serial port. The code reads data until it finds
the first line with no data, signifying the end of a request. An HTTP header is sent using
the client.println commands followed by the printing of the values of the analog
ports.

15.7 Handling Incoming Web Requests

Problem

You want to control digital and analog outputs with Arduino acting as a web server.
For example, you want to control the values of specific pins through parameters sent
from your web browser.

Solution

This sketch reads requests sent from a browser and changes the values of digital and
analog output ports as requested.

The URL (browser request) contains one or more fields starting with the word pin
followed by a D for digital or A for analog and the pin number. The value for the pin
follows an equals sign.

15.7 Handling Incoming Web Requests | 471

http://oreilly.com/catalog/9780596008956/

For example, sending http://192.168.1.177/?pinD2=1 from your browser’s address bar
turns digital pin 2 on; http://192.168.1.177/?pinD2=0 turns pin 2 off. (See Chapter 7 if
you need information on connecting LEDs to Arduino pins.)

Figure 15-1 shows what you will see on your web browser when connected to the web
server code that follows:

/*
* WebServerParsing

*

* Respond to requests in the URL to change digital and analog output ports

* show the number of ports changed and the value of the analog input pins.
*

*/

#if ARDUINO > 18

#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#tinclude <Ethernet.h>
#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192,168,1,177 };

Server server(80);
void setup()
{

Serial.begin(9600);

Ethernet.begin(mac, ip);

server.begin();

Serial.println("ready");
}

void loop()
{

Client client = server.available();
if (client) {
TextFinder finder(client);
while (client.connected()) {
if (client.available()) {
// counters to show the number of pin change requests
int digitalRequests = 0;
int analogRequests = 0;
if(finder.find("GET /")) {
// find tokens starting with "pin" and stop on the first blank line
while(finder.findUntil("pin", "\n\r")){
char type = client.read(); // D or A
int pin = finder.getValue();
int val = finder.getValue();
if(type == 'D') {
Serial.print("Digital pin ");
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
digitalRequests++;

472 | Chapter15: Ethernetand Networking

}

else if(type == 'A"){
Serial.print("Analog pin ");
analogWrite(pin, val);
analogRequests++;

else {
Serial.print("Unexpected type ");
Serial.print(type);
}
Serial.print(pin);
Serial.print("=");
Serial.println(val);
}

}
Serial.println();

// the finduntil has detected the blank line (a 1f followed by cr)
// so the http request has ended and we can send a reply

// send a standard http response header

client.println("HTTP/1.1 200 OK");

client.println("Content-Type: text/html");

client.println();

// output the number of pins handled by the request
client.print(digitalRequests);

client.print(" digital pin(s) written");
client.println("
");
client.print(analogRequests);

client.print(" analog pin(s) written");
client.println("
");

client.println("
");

// output the value of each analog input pin

for (int i = 0; 1 < 6; i++) {
client.print("analog input ");
client.print(i);
client.print(" is ");
client.print(analogRead(i));
client.println("
");

}

break;
}
}
// give the web browser time to receive the data

delay(1);
client.stop();

15.7 Handling Incoming Web Requests

| 473

) Mozilla Firefox
File Edit Wew Higtory Bookmarks Tools Help

@ - ‘v [[) | ttpesy192.168. 1,177 ppinD2=1 ot

1 digital pin(s) written
() analog pin(s) written

analog input 0 is 286
analog input 1 is 266
analog input 2 is 269
analog input 3 is 279
analog input 4 is 284
analog nput 5 is 308

Figure 15-1. Browser page displaying output created by this recipe’s Solution

Discussion

This is what was sent: http://192.168.1.177/?pinD2=1. Here is how the information is
broken down: Everything before the question mark is treated as the address of the web
server (192.168.1.177 in this example; this address is the IP address set at the top of
the sketch for the Arduino board). The remaining data is a list of fields, each beginning
with the word pin followed by a D indicating a digital pin or A indicating an analog
pin. The numeric value following the D or A is the pin number. This is followed by an
equals sign and finally the value you want to set the pin to. pinD2=1 sets digital pin 2
HIGH. There is one field per pin, and subsequent fields are separated by an ampersand.
You can have as many fields as there are Arduino pins you want to change.

The sketch can be extended to handle multiple parameters by using ampersands to
separate multiple fields. For example: http://192.168.1.177/?pinD2=1&pinD3=0&pi-
nA9=128&pinAl11=255

Each field within the ampersand is handled as described earlier. You can have as many
fields as there are Arduino pins you want to change.

15.8 Handling Incoming Requests for Specific Pages

Problem

You want to have more than one page on your web server; for example, to show the
status of different sensors on different pages.

474 | Chapter15: Ethernetand Networking

Solution

This sketch looks for requests for pages named “analog” or “digital” and displays the
pin values accordingly:

/*
* WebServerMultiPage

*

* Respond to requests in the URL to view digital and analog output ports
*

* http://192.168.1.177/analog/ displays analog pin data

* http://192.168.1.177/digital/ displays digital pin data

*/
#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OXFE, OXED };
byte ip[] = { 192,168,1,177 };

char buffer[8]; // make this buffer big enough to hold requested page names
Server server(80);
void setup()

Serial.begin(9600);

Ethernet.begin(mac, ip);

server.begin();

Serial.println("Ready");
}

void loop()
{

Client client = server.available();
if (client) {
TextFinder finder(client);
while (client.connected()) {
if (client.available()) {
if(finder.find("GET ")) {
// look for the page name
if(finder.getString("/", "/", buffer, sizeof(buffer)))

if(stremp(buffer, "analog") == 0)
showAnalog(client);

else if(strcmp(buffer, "digital") == 0)
showDigital(client);

else
unknownPage(client, buffer);

15.8 Handling Incoming Requests for Specific Pages | 475

Serial.println();
break;

}

// give the web browser time to receive the data
delay(1);
client.stop();
}
}

void showAnalog(Client client)
{
Serial.println("analog");
sendHeader (client);
client.println("<h1>Analog Pins</h1>");
// output the value of each analog input pin

for (int i = 0; 1 < 6; i++) {
client.print("analog pin ");
client.print(i);
client.print(" = ");
client.print(analogRead(i));
client.println("
");

}

}

void showDigital(Client client)

Serial.println("digital");
sendHeader(client);
client.println("<h1>Digital Pins</h1>");
// show the value of digital pins
for (int i = 2; i < 8; i++) {
pinMode(i, INPUT);
client.print("digital pin ");
client.print(i);
client.print(" is ");
if(digitalRead(i) == LOW)
client.print("LOW");
else
client.print("HIGH");
client.println("
");

}
client.println("</body></html>");
}

void unknownPage(Client client, char *page)
{
Serial.print("Unknown : ");
Serial.println("page");

sendHeader(client);
client.println("<h1>Unknown Page</h1>");
client.println(page);
client.println("</body></html>");

476 | Chapter15: Ethernetand Networking

}

void sendHeader(Client client)

{

// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.println("<html><head><title>Web server multi-page Example</title>");
client.println("<body>");
}

Discussion

You can test this from your web browser by typing http://192.168.1.177/analog/ or
http://192.168.1.177/digital/ (if you are using a different IP address for your server,
change the URL to match).

Figure 15-2 shows the expected output.

3 Web server Multi-Page Example - Mozilla Firefox E'E'FE'
File Edit WView History Bookmarks Tools Help

@. (& ', [: | | http:/f192. 168. 1. 177/digital/ T
Digital Pins

digital pin 2 is HIGH
digital pin 3 is HIGH
digital pin 4 is HIGH
digital pin 5 is LOW
digital pin 6 is LOW
digital pin 7 is LOW

Figure 15-2. Browser output showing digital pin values

The sketch looks for the “/” character to determine the end of the page name. The
server will report an unknown page if the “/” character does not terminate the page
name.

Here is an enhancement that includes some code from Recipe 15.7 to allow control of
Arduino pins from a private page. Here is the new loop code:

void loop()
{

Client client = server.available();
if (client) {
TextFinder finder(client);
while (client.connected()) {

15.8 Handling Incoming Requests for Specific Pages | 477

if (client.available()) {
if(finder.find("GET ")) {
if(finder.getString("/", "/", buffer, sizeof(buffer))) // look for
the page name

if(stremp(buffer, "analog") == 0)
showAnalog(client);

else if(strcmp(buffer, "digital") == 0)
showDigital(client);

else if(strcmp(buffer, "private") == 0) // add this check
showPrivate(client); // and this function call

else
unknownPage(client, buffer);
}

Serial.println();
break;

}

// give the web browser time to receive the data
delay(1);
client.stop();
}
}

Here is the showPrivate function:

void showPrivate(Client client, TextFinder finder)
{
Serial.println("private");
sendHeader(client);
// find tokens starting with "pin" and stop on the first blank line
while(finder.finduUntil("pin", "\n\r")){
char type = client.read(); // D or A
int pin = finder.getValue();
int val = finder.getValue();
if(type == 'D') {
Serial.print("Digital pin ");
pinMode(pin, OUTPUT);
digitalWrite(pin, val);

}

else if(type == 'A"){
Serial.print("Analog pin ");
analogWrite(pin, val);

else {
Serial.print("Unexpected type ");
Serial.print(type);
}
Serial.print(pin);
Serial.print("=");
Serial.println(val);

478 | Chapter15: Ethernetand Networking

}
}

Sending http://192.168.1.177/private/?pinA5=128 from your browser’s address bar
writes the value 128 to analog output pin 5.

15.9 Using HTML to Format Web Server Responses

Problem

You want to use HTML elements such as tables and images to improve the look of web
pages served by Arduino. For example, you want the output from Recipe 15.8 to be
rendered in an HTML table.

Solution

Figure 15-3 shows how the web server in this recipe’s Solution formats the browser
page to display pin values. (You can compare this to the unformatted values shown in
Figure 15-2.)

%3 Multi-page: Digital - Mozilla Firefox *J Multi-page: Analog - Mozilla Firefox

Fle Edt Mew Hotory Bookmarke Toole Heb Fle Edt Mew Hotory Bookmarke Toole Heb

6 = C i L) | hemeiezass 1 rdatay T - 6 - Gt L | w2168, 1, Lo7jarainnr -
Digital Pins Analog Pins

digital pin 2 [High analog pin 0 308

digital pin 3 [High analog pin 1 [264

ligital pin 4 [High analog pin 2 [277

dipital pin 3 [High analog pin 3 (279

digital pin 6§ [Low analog pin 4 (280

|digital pin 7 [Frigh analog pin 5 [303

Figure 15-3. Browser pages using HTML formatting

This sketch shows the functionality from Recipe 15.8 with output formatted using
HTML:
/*

* WebServerMultiPageHTML
*

* Display analog and digital pin values using HTML formatting
*/
#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>

15.9 Using HTML to Format Web Server Responses | 479

#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192,168,1,177 };

char buffer[8]; // make this buffer big enough to hold requested page names
Server server(80);

void setup()

{

Ethernet.begin(mac, ip);
server.begin();
pinMode(13,0UTPUT);
for(int i=0; i < 3; i++)

digitalWrite(13,HICH);
delay(500);
digitalWrite(13,LOW);
delay(500);

}
void loop()
{

Client client = server.available();
if (client) {
TextFinder finder(client);
while (client.connected()) {
if (client.available()) {
if(finder.find("GET ")) {
// look for the page name
if(finder.getString("/", "/", buffer, sizeof(buffer)))

if(strcasecmp(buffer, "analog") == 0)
showAnalog(client);

else if(strcasecmp(buffer, "digital") == 0)
showDigital(client);

else if(strcmp(buffer, "private")== 0)
showPrivate(client, finder);

else
unknownPage(client, buffer);

}

}

break;

}

// give the web browser time to receive the data
delay(1);
client.stop();

480 | Chapter15: Ethernetand Networking

void showAnalog(Client client)
{
sendHeader (client, "Multi-page: Analog");
client.println("<h2>Analog Pins</h2>");
client.println("<table border="1"' >");
for (int i = 0; i < 6; i++) {
// output the value of each analog input pin
client.print("<tr><td>analog pin ");
client.print(i);
client.print(" </td><td>");
client.print(analogRead(i));
client.println("</td></tr>");

client.println("</table>");
client.println("</body></html>");
}

void showDigital(Client client)
{
sendHeader(client,"Multi-page: Digital");
client.println("<h2>Digital Pins</h2>");
client.println("<table border='1'>");
for (int i = 2; 1 < 8; i++) {
// show the value of digital pins
pinMode(i, INPUT);
digitalWrite(i, HICH); // turn on pull-ups
client.print("<tr><td>digital pin ");
client.print(i);
client.print(" </td><td>");
if(digitalRead(i) == LOW)
client.print("Low");
else
client.print("High");
client.printIn("</td></tr>");
}
client.println("</table>");
client.println("</body></html>");
}

void showPrivate(Client client, TextFinder finder)

sendHeader (client, "Multi-page: Private");
// find tokens starting with "pin" and stop on the first blank line
while(finder.findUntil("pin", "\n\r")){
char type = client.read(); // D or A
int pin = finder.getValue();
int val = finder.getValue();
if(type = 'D') {
pinMode(pin, OUTPUT);
digitalWrite(pin, val);

else if(type == 'A"){
analogWrite(pin, val);

}

15.9 Using HTML to Format Web Server Responses | 481

else {
client.print(Serial.print("Unexpected type ");
client.println(type);

}
}

void unknownPage(Client client, char *page)

sendHeader(client, "Unknown Page");
client.println("<h1>Unknown Page</h1>");
client.println(page);
client.println("</body></html>");

}

void sendHeader(Client client, char *title)

{

// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.print("<html><head><title>");
client.println(title);
client.println("</title><body>");

}

Discussion

The same information is provided as in Recipe 15.8, but here the data is formatted
using an HTML table. The following code indicates that the web browser should create
a table with a border width of 1:

client.println("<table border="1"' >");
The for loop defines the table data cells with the <td> tag and the row entries with

the <tr> tag. The following code places the string "analog pin" in a cell starting on a
new row:

client.print("<tr><td>analog pin ");
This is followed by the value of the variable i:
client.print(i);
The next line contains the tag that closes the cell and begins a new cell:
client.print(" </td><td>");
This writes the value returned from analogRead into the cell:
client.print(analogRead(i));
The tags to end the cell and end the row are written as follows:
client.println("</td></tr>");

482 | Chapter15: Ethernetand Networking

The for loop repeats this until all six analog values are written. Any of the books men-
tioned in “Series 1 configuration” on page 435 or one of the many HTML reference
sites can provide more details on HTML tags.

See Also
Learning Web Design by Jennifer Niederst Robbins (O’Reilly)
Web Design in a Nutshell by Jennifer Niederst Robbins (O’Reilly)

HTML & XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O’Re-
illy)

15.10 Serving Web Pages Using Forms (POST)

Problem

You want to create web pages with forms that allow users to select an action to be
performed by Arduino. Figure 15-4 shows the web page created by this recipe’s
Solution.

) post example - Mozilla Firefox

File Edit Wew Higtory Bookmarks Tools Help

@ - c Gy [| htpegie2 68,1177 7T
Click buttons to turn pin 8 on or off

Figure 15-4. Web form with buttons

Solution

This sketch creates a web page that has a form with buttons. Users navigating to this
page will see the buttons in the web browser and the Arduino web server will respond
to the button clicks. In this example, the sketch turns a pin on and off depending on
which button is pressed:

/*

* WebServerPost sketch
*

15.10 Serving Web Pages Using Forms (POST) | 483

http://oreilly.com/catalog/9780596527525/
http://oreilly.com/catalog/9780596009878/
http://oreilly.com/catalog/9780596527327/

*/
#if ARDUINO > 18
#tinclude <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <TextFinder.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OXFE, OXED };
byte ip[] = { 192,168,1,177 };

char buffer[8]; // buffer holding the requested page name
Server server(80);

void setup()

{

Serial.begin(9600);

Ethernet.begin(mac, ip);

server.begin();

delay(3000);

Serial.println("Ready");
}

void loop()
{

Client client = server.available();
if (client) {
TextFinder finder(client);
int type = 0;
while (client.connected()) {
if (client.available()) {
// GET, POST, or HEAD
if(finder.getString("","/", buffer,sizeof(buffer))){
if(stremp(buffer,"POST ") == 0){
finder.find("\n\r"); // skip to the body
// find string starting with "pin", stop on first blank line
// the POST parameters expected in the form pinDx=Y
// where x is the pin number and Y is 0 for LOW and 1 for HICH
while(finder.findUntil("pinD", "\n\r")){
int pin = finder.getValue(); // the pin number
int val = finder.getValue(); // 0or 1
pinMode(pin, OUTPUT);
digitalWrite(pin, val);
}

sendHeader (client, "Post example");

//create HTML button to control pin 8

client.println("<h2>Click buttons to turn pin 8 on or off</h2>");

client.print("<form action="/"' method="'POST'><p><input type="hidden’
name="pinD8'");

client.println(" value='0'><input type='submit' value='Off'/></form>");

//create HTML button to turn on pin 8

client.print("<form action="/"' method="'POST'><p><input type="hidden’
name="'pinD8"'");

484 | Chapter15: Ethernetand Networking

client.print(" value='1'><input type='submit' value='0On'/></form>");
client.println("</body></html>");
client.stop();

break;

}

// give the web browser time to receive the data
delay(1);
client.stop();
}
}

void sendHeader(Client client, char *title)

{

// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.print("<html><head><title>");
client.print(title);
client.println("</title><body>");

}

Discussion

A web page with a user interface form consists of HTML tags that identify the controls
(buttons, checkboxes, labels, etc.) that comprise the user interface. This recipe uses
buttons to provide the user interface.

These lines create a form with a button named pinD8 that is labeled “OFF”, which will
send back a value of 0 (zero) when clicked:
client.print("<form action="/" method="POST'><p><input type='hidden'
name="'pinD8'");
client.printIn(" value='0'><input type='submit' value='Off'/></form>");
When the server receives a request from a browser, it looks for the "POST " string to
identify the start of the posted form:
if(stremp(buffer,"POST ") == 0) // find the start of the posted form
finder.find("\n\r"); // skip to the body
// find parameters starting with "pin" and stop on the first blank line

// the POST parameters expected in the form pinDx=Y
// where x is the pin number and Y is 0 for LOW and 1 for HICH

If the OFF button was pressed, the received page will contain the string pinD8=0, or
pinD8=1 for the ON button.

The sketch searches until it finds the button name (pinD):
while(finder.findUntil("pinD", "\n\r"))

15.10 Serving Web Pages Using Forms (POST) | 485

The finduntil method in the preceding code will search for “pinD” and stop searching
at the end of a line (\n\r is the newline carriage return sent by the web browser at the
end of a form).
The number following the name pinD is the pin number:

int pin = finder.getValue(); // the pin number
And the value following the pin number will be 0 if button OFF was pressed or 1 if
button ON was pressed:

int val = finder.getValue(); // 0or 1

The value received is written to the pin after setting the pin mode to output:

pinMode(pin, OUTPUT);
digitalWrite(pin, val);
More buttons can be added by inserting tags for the additional controls. The following
lines add another button to turn on digital pin 9:
//create HTML button to turn on pin 9
client.print("<form action="/"' method="POST'><p><input type="hidden’

name="pinD9'");
client.print(" value='1'><input type='submit' value='On'/></form>");

15.11 Serving Web Pages Containing Large Amounts of Data

Problem

Your web pages require more memory than you have available, so you want to use
program memory (also known as progmem or flash memory) to store data (see
Recipe 17.4).

Solution

This sketch combines the POST code from Recipe 15.10 with the HTML code from
Recipe 15.9 and adds new code to access text stored in progmem. As in Recipe 15.9,
the server can display analog and digital pin status and turn digital pins on and off (see
Figure 15-5):

/*
* WebServerMultiPageHTMLProgmem sketch

*

* Respond to requests in the URL to change digital and analog output ports
* show the number of ports changed and the value of the analog input pins.
*

* http://192.168.1.177/analog/ displays analog pin data

* http://192.168.1.177/digital/ displays digital pin data

* http://192.168.1.177/private/ allows changing digital pin data

*

*

Progmem code derived from webduino library by Ben Combee and Ran Talbott

*/

486 | Chapter15: Ethernetand Networking

3 Multi-page example-Private - Mozilla Firefox |:||E|fz|

File Edit Wew Higtory Bookmarks Tools Help

@ - b |: |7 | http://192.168. 1. 177fprivate/ A
sz [[[®

soimnr || [®

ioimar || [®

‘digila]inputS ‘ ‘ &

dgia ouput -

digital output 7 &

digital output 8 -)

digital output 9 -)

Figure 15-5. Web page with LED images

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>

#include <TextFinder.h>

#include <avr/pgmspace.h> // for progmem

#tdefine P(name) static const prog_uchar name[] PROGMEM // declare a static
string

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192,168,1,177 };

char buffer[8]; // make this buffer big enough to hold requested page names
Server server(80);
void setup()

Serial.begin(9600);

15.11 Serving Web Pages Containing Large Amounts of Data | 487

Ethernet.begin(mac, ip);
server.begin();
delay(3000);
Serial.println("Ready");

}

void loop()

Client client = server.available();
if (client) {
TextFinder finder(client);
int type = 0;
while (client.connected()) {
if (client.available()) {
// GET, POST, or HEAD
if(finder.getString("","/", buffer,sizeof(buffer))){
if(stremp(buffer, "GET ") == 0)

type = 1;
else if(strcmp(buffer,"POST ") == 0)
type = 2;

Serial.print("Type = ");

Serial.println(type);

// look for the page name

if(finder.getString("", "/", buffer, sizeof(buffer)))

Serial.print(buffer);

Serial.print("|");

if(strcasecmp(buffer, "analog") == 0)
showAnalog(client);

else if(strcasecmp(buffer, "digital") == 0)
showDigital(client);

else if(strcmp(buffer, "private")== 0)
showPrivate(client, finder, type == 2);

else
unknownPage(client, buffer);

}
Serial.println();
break;
}
}
// give the web browser time to receive the data
delay(1);
client.stop();
}
}
void showAnalog(Client client)
{

Serial.println("analog");
sendHeader (client, "Multi-page example-Analog");
client.println("<h1>Analog Pins</h1>");

// output the value of each analog input pin

488 | Chapter15: Ethernetand Networking

client.println("<table border="1"' >");

for (int i = 0; 1 < 6; i++) {
client.print("<tr><td>analog pin ");
client.print(i);
client.print(" </td><td>");
client.print(analogRead(i));
client.println("</td></tr>");

}

client.println("</table>");

client.println("</body></html>");

}

// mime encoded data for the led on and off images:

// see: http://www.motobit.com/util/base64-decoder-encoder.asp

P(led_on) = "<img src=\"data:image/jpg;base64,"

"/93j/4AAQSkZIRGABAGAAZABKAAD/ 7AARRHVja3kAAQAEAAAAHEAA/+4ADKFkb2]1AGTAAAAAAT /b"
"ATQAEASLCwwLEAWMEBCcPDQ8XGXQQEBQbHxXcXFxcXHx4XGhoaGhceHiM1IyUjHi8vMzMvLOBAQEBA"
"QEBAQEBAQEBAQAERDWSREXEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnIy4rNTUw"
"MDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAGWAZAWE IAATRAQMRAT /EATTAAATCAWAAAAAAAAAAAAAA™
" AAUGAACCAWQBAAMBAAAAAAAAAAAAAAAAAAACBAUQAAECBAQBCg CAAAAAAAAAAAE CAWARMRINQQQF "
"UWFxkaHRMoITUwYiQnKSIxQ1EQAAAWYEBWAAAAAAAAAAAAAAARECEGMTBBQhQWE iMVGBMkIiJP/a"
"AAWDAQACEQMRAD8ACNZz3BGibKieonhCov3A+teKIt8ImZEdHUZal0itgUoHnEpQEWtSyLqgACWFI"
"nixWiaQhsUFFBiQSbiMvvrmeCBp27eLnG71FTDxs+Kra8o0yium31tIUACDIy4EUMN/7Dng9cPMO"
"W90E9kxeyF2d3HF0Q17501KudUm7TqlfKqDQEDOFR1sNqtC7k5ERYjndNPFSArtvnI/nV+ed9col”
"ktd2BgozrSZ0335jVEXRcwD2bbXNdqozT+BohTyjgPp5SYdPIZ9NP2jsilz7vhjLohtjngd/ouPK"
"co//2Q=="

\"/>";

P(led_off) = "<img src=\"data:image/jpg;base64,"
"/93/4AAQSkZIRgABAgAAZABKAAD/ 7AARRHV ja3kAAQAEAAAAHEAA/+4ADKFkb2J1AGTAAAAAAT/b"
"ATQAEASLCwwLEAWMEBCcPDQ8XGXQQEBQbHXcXFxcXHx4XGhoaGhceHiM1JyUjHi8vMzMvLOBAQEBA"
"QEBAQEBAQEBAQAERDWSREXEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzAxrLicnIy4rNTUw"
"MDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAHAAZAWE iAATRAQMRAT /EAHgAAQEAAWAAAAAAAAAAAAAA™
"AAYFAgQHAQEBAQAAAAAAAAAAAAAAAAACAQQQAAECBQAHBQKAAAAAAAAAAAECAWARENMEITFhoSIF"
"FUFROUIGEZHBM1IjM1MWEQABAWQDAQEAAAAAAAAAAAABABECIWESALETIYIE/90ADAMBAATIRAXEA"
"PwBv15SWEkkylpIMGs j1XjXSE1kCQuI8Iy9Ws5DoxradFa6VDf8IIZAQ61oNtBooTIaqp3DP50B1V"
"nWrTpEouQS/Cf4POOUKbgWHGXTS1ztSvuVFiZjmfLH3GUuMkzSoTMu8aiNsXet5/17hFyo6PR64V"
"ZnuqfqDDDySFpNpYH3E6aFjzGBr2DkMuFBSFDsWkilUdLftW13pWpcdWgnbBzI/16hVXKZ1ROUSe"
"L1KX5zvAPXESjdHs TFWpxLK0J54hIA1DZCj+Vx/3r96fCNrkvRaT0O+V3zV/11plr9sVeHZui/ONk"
"H3dzt6cL/9k="

SUSE

)
void showDigital(Client client)

Serial.println("digital");
sendHeader (client, "Multi-page example-Digital");
client.println("<h2>Digital Pins</h2>");
// show the value of digital pins
client.println("<table border='1'>");
for (int i = 2; i < 8; i++) {
pinMode(i, INPUT);
digitalWrite(i, HICH); // turn on pull-ups
client.print("<tr><td>digital pin ");
client.print(i);

15.11 Serving Web Pages Containing Large Amounts of Data | 489

client.print(" </td><td>");
if(digitalRead(i) == LOW)
printP(client, led off);
else
printP(client, led on);
client.println("</td></tr>");

client.println("</table>");

client.println("</body></html>");
}

void showPrivate(Client client, TextFinder finder, boolean isPost)
{
Serial.println("private");
if(isPost)
{
Serial.println("isPost");
finder.find("\n\r"); // skip to the body
// find parameters starting with "pin" and stop on the first blank line
Serial.println("searching for parms");
while(finder.findUntil("pinD", "\n\r")){

int pin = finder.getValue(); // the pin number
int val = finder.getValue(); // 0or 1
Serial.print(pin);

Serial.print("=");

Serial.println(val);

pinMode(pin, OUTPUT);
digitalWrite(pin, val);
}

sendHeader (client, "Multi-page example-Private");
// table with buttons from 2 through 9
// 2 to 5 are inputs, the other buttons are outputs

client.println("<table border="1'>");

// show the input pins

for (int i = 2; i < 6; i++) { // pins 2-5 are inputs
pinMode(i, INPUT);
digitalWrite(i, HICH); // turn on pull-ups
client.print("<tr><td>digital input ");
client.print(i);
client.print(" </td><td>");

client.print("8 </td><td>");
client.print(" </td><td>");
client.print("8 </td><td>");

if(digitalRead(i) == LOW)
//client.print("Low");
printP(client, led off);
else

490 | Chapter15: Ethernetand Networking

//client.print("high");
printP(client, led on);
client.println("</td></tr>");

// show output pins 6-9

// note pins 10-13 are used by the ethernet shield

for (int i = 6; i < 10; i++) {
client.print("<tr><td>digital output ");
client.print(i);
client.print(" </td><td>");
htmlButton(client, "On", "pinD", i, "1");
client.print(" </td><td>");
client.print(" </td><td>");
htmlButton(client, "Off", "pinD", i, "0");
client.print(" </td><td>");

if(digitalRead(i) == LOW)
//client.print("Low");
printP(client, led off);
else
//client.print("high");
printP(client, led on);
client.println("</td></tr>");

client.println("</table>");
}

// create an HTML button
void htmlButton(Client client, char * label, char *name, int nameld, char *value)

P(buttonBegin) = "<form action='/private' method="'POST'><p><input type="hidden'
name="";

printP(client, buttonBegin);

client.print(name);

client.print(nameId);

client.print("' value="");

client.print(value);

P(buttonType) = "'><input type='submit' value='";

printP(client, buttonType);

client.print(label);

P(buttonEnd) = "'/></form>";

printP(client, buttonEnd);

}
void unknownPage(Client client, char *page)

Serial.print("Unknown : ");
Serial.println("page");

sendHeader (client, "Unknown Page");
client.println("<h1>Unknown Page</h1>");
client.println(page);
client.println("</body></html>");

15.11 Serving Web Pages Containing Large Amounts of Data | 491

void sendHeader(Client client, char *title)

{

// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.print("<html><head><title>");
client.println(title);
client.println("</title><body>");

}

void printP(Client client, const prog_uchar *str)

// copy data out of program memory into local storage, write out in
// chunks of 32 bytes to avoid extra short TCP/IP packets

// from webduino library Copyright 2009 Ben Combee, Ran Talbott
uint8 t buffer[32];

size t bufferEnd = 0;

while (buffer[bufferEnd++] = pgm read byte(str++))

if (bufferknd == 32)
{
client.write(buffer, 32);
bufferknd = 0;
}
}

// write out everything left but trailing NUL
if (bufferknd > 1)
client.write(buffer, bufferknd - 1);
}

Discussion

The logic used to create the web page is similar to that used in the previous recipes.
The form here is based on Recipe 15.10, but it has more elements in the table and uses
embedded graphical objects to represent the state of the pins. If you have ever created
a web page, you may be familiar with the use of JPEG images within the page. Arduino
does not have the capability to store images as .jpg files.

Images need to be encoded using one of the Internet standards such as Multipurpose
Internet Mail Extensions (MIME). This provides a way to represent graphical (or other)
media using text. The sketch in this recipe’s Solution shows what the LED images look
like when they are MIME-encoded. Many web-based services will MIME-encode your
images; the ones in this recipe were created using the service at http://www.motobit
.com/util/base64-decoder-encoder.asp.

Even the small LED images used in this example are too large to fit into Arduino RAM.
Program memory (flash) is used; see Recipe 17.3 for an explanation of the P(name)
expression.

492 | Chapter15: Ethernetand Networking

http://www.motobit.com/util/base64-decoder-encoder.asp
http://www.motobit.com/util/base64-decoder-encoder.asp

The images representing the LED on and off states are stored in a sequence of charac-
ters; the LED on array begins like this:

P(led_on) = "<img src=\"data:image/jpg;base64,"

P(led_on) = defines led on as the name of this array. The characters are the HTML
tags identifying an image followed by the MIME-encoded data comprising the image.

This example is based on code produced for the Webduino web server. Webduino is
highly recommended for building web pages if your application is more complicated
than the examples shown in this chapter.

See Also
Webduino web page: http://code.google.com/p/webduino/

15.12 Sending Twitter Messages

Problem

You want Arduino to send messages to Twitter; for example, when a sensor detects
some activity that you want to monitor via Twitter.

Solution

This sketch sends a Twitter message when a switch is closed. It uses the Twitter li-
brary developed by neocat, which you can download from http://www.arduino.cc/play
ground/Code/TwitterLibrary:

#if ARDUINO > 18

#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <Twitter.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192, 168, 1, 177 };

byte gateway[] = { 192, 168, 1, 254 };

byte subnet[] = { 255, 255, 255, 0 };

Twitter twitter("YourID:Password");

boolean MsgSent = false;
const int Sensor = 2;

void setup()

Ethernet.begin(mac, ip, gateway, subnet);
Serial.begin(9600);

15.12 Sending Twitter Messages | 493

http://code.google.com/p/webduino/
http://www.arduino.cc/playground/Code/TwitterLibrary
http://www.arduino.cc/playground/Code/TwitterLibrary

pinMode(Sensor, INPUT);
digitalWrite(Sensor, HIGH); //turn on pull-up resistors
delay(1000);

void loop()

if(digitalRead(Sensor) == LOW)
{ // here if mailbox is open
if(MsgSent == false){ // check if message already sent
MsgSent = sendMessage("Mail has been delivered");
}

}
else{
MsgSent = false; // door closed so reset the state

}
delay(100);
}

boolean sendMessage(char *message)

{

boolean isSent = false;

Serial.println("connecting ...");
if (twitter.post(message)) {
int status = twitter.wait();
if (status == 200) {
Serial.println("0K.");
isSent = true;
} else {
Serial.print("failed : code ");
Serial.println(status);

}
} else {
Serial.println("connection failed.");

}
delay(100);
return isSent;

}

Discussion

The Twitter interface is encapsulated in the Twitter library. This posts to Twitter
through an intermediary, http://arduino-tweet.appspot.com/, which spares you the
problem of keeping up with changes to Twitter, most notably its authentication.

Twitter twitter("YourID:Password"); initializes the Twitter library; you will need to
substitute your ID and password in that string in order to log on to Twitter.

twitter.post(message); attempts to send the message string “Mail has been delivered”
to Twitter and returns true if it is able to connect.

twitter.wait(); gets the resultant status. A value of 200 (200 is the Internet standard
reply for success) prints OK; otherwise, the error code is printed. See the documentation

494 | Chapter15: Ethernetand Networking

http://arduino-tweet.appspot.com/

for the Twitter library (or the Twitter API documentation) for more details on the error
codes.

The following version uses the same sendMessage function but can monitor an array of
Sensors:

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <Twitter.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte ip[] = { 192, 168, 1, 177 };

byte gateway[] = { 192, 168, 1, 254 };

byte subnet[] = { 255, 255, 255, 0 };

Twitter twitter("YourID:Password");

char frontOpen[] = "The front door was opened";
char backOpen[] = "The back door was opened";

const int frontSensor = 2;
const int backSensor = 3;

boolean frontMsgSent = false;
boolean backMsgSent = false;

void setup()

Ethernet.begin(mac, ip, gateway, subnet);
Serial.begin(9600);

pinMode(frontSensor, INPUT);
pinMode(backSensor, INPUT);
digitalWrite(frontSensor, HIGH); // pull-ups
digitalWrite(backSensor, HIGH);

delay(1000);

}

void loop()

if(digitalRead(frontSensor) == LOW)
{ // here if door is open
if(frontMsgSent == false){ // check if message already sent
frontMsgSent = sendMessage(frontOpen);
}

}
else{

frontMsgSent = false; // door closed so reset the state

}
if(digitalRead(backSensor) == LOW)

15.12 Sending Twitter Messages | 495

if(frontMsgSent == false) {
backMsgSent = sendMessage(backOpen);
}

else {
backMsgSent = false;

}
delay(100);
// add in the sendMessage function from the sketch above

The code that communicates with Twitter is the same, but the message string here is
constructed from the values read from sensors connected to two Arduino digital pins.

15.13 Sending and Receiving Simple Messages (UDP)

Problem

You want to send and receive simple messages over the Internet.

Solution

This sketch uses the Arduino UDP (User Datagram Protocol) library to send and receive
strings. In this simple example, Arduino prints the received string to the Serial Monitor
and a string is sent back to the sender saying “acknowledged”:
*
* UDPSendReceiveStrings

* This sketch receives UDP message strings, prints them to the serial port

* and sends an "acknowledge" string back to the sender
*

*/

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <Udp.h> // UDP library from: bjoern@cs.stanford.edu 12/30/2008

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED }; // MAC address to use
byte ip[] = {192, 168, 1, 177 }; // Arduino's IP address

unsigned int localPort = 8888; // local port to listen on

// the next two variables are set when a packet is received
byte remoteIp[4]; // holds received packet's originating IP
unsigned int remotePort; // holds received packet's originating port

// buffers for receiving and sending data
byte packetBuffer[UDP_TX_PACKET MAX SIZE]; //buffer to hold incoming packet,
char replyBuffer[] = "acknowledged"; // a string to send back

496 | Chapter15: Ethernetand Networking

void setup() {
// start the Ethernet and UDP:
Ethernet.begin(mac,ip);
Udp.begin(localPort);

Serial.begin(9600);
}

void loop() {
// if there's data available, read a packet
int packetSize = Udp.available(); // note that this includes the UDP header
if(packetSize)
{

packetSize = packetSize - 8; // subtract the 8 byte header
Serial.print("Received packet of size ");
Serial.println(packetSize);

// read packet into packetBuffer and get sender's IP addr and port number
Udp.readPacket(packetBuffer,UDP_TX PACKET MAX SIZE, remotelp, &remotePort);
Serial.println("Contents:");

Serial.println((char*)packetBuffer);

// send a string back to the sender
Udp.sendPacket((byte*)replyBuffer,strlen(replyBuffer),remotelp,remotePort);

}
delay(10);

You can test this by running the following Processing sketch on your computer (see
Chapter 4 for guidance on installing and running Processing):

// Processing UDP example to send and receive string data from Arduino
// press any key to send the "Hello Arduino" message
import hypermedia.net.*;
UDP udp; // define the UDP object
void setup() {
udp = new UDP(this, 6000); // create a new datagram connection on port 6000

//udp.log(true); // <-- print out the connection activity
udp.listen(true); // and wait for incoming message

void draw()

}

void keyPressed() {

String ip = "192.168.1.177"; // the remote IP address
int port = 8888; // the destination port

15.13 Sending and Receiving Simple Messages (UDP) | 497

udp.send("Hello World", ip, port); // the message to send

}

void receive(byte[] data) { // <-- default handler
//void receive(byte[] data, String ip, int port) { // <-- extended handler

for(int i=0; i < data.length; i++)
print(char(data[i]));
println();

Discussion

Plug the Ethernet shield into Arduino and connect the Ethernet cable to your computer.
Upload the Arduino sketch and run the Processing sketch on your computer. Hit any
key to send the “hello Arduino” message. Arduino sends back “acknowledged”, which
is displayed in the Processing text window. String length is limited by a constant set in
the Udp.h library file; the default value is 24 bytes, but you can increase this by editing
the following line in Udp.h if you want to send longer strings:

#define UDP_TX PACKET MAX_SIZE 24

UDP is a simple and fast way to send and receive messages over Ethernet. But it does
have limitations—the messages are not guaranteed to be delivered, and on a very busy
network some messages could get lost or get delivered in a different order than that in
which they were sent. But UDP works well for things such as displaying the status of
Arduino sensors—each message contains the current sensor value to display, and any
lost messages get replaced by messages that follow.

This sketch demonstrates sending and receiving sensor messages. It receives messages
containing values to be written to the analog output ports and replies back to the sender

with the values on the analog input pins:
J*
* UDPSendReceive sketch:
*/
#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <Udp.h> // UDP library from: bjoern@cs.stanford.edu 12/30/2008

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED }; // MAC address to use
byte ip[] = {192, 168, 1, 177 }; // Arduino's IP address

byte gw[] = {192, 168, 1, 254 }; // Gateway IP address

unsigned int localPort = 8888; // local port to listen on

byte packetBuffer[UDP_TX PACKET MAX SIZE]; //buffer to hold incoming packet,
int packetSize; // holds received packet size
byte remoteIp[4]; // holds received packet's originating IP

498 | Chapter15: Ethernetand Networking

unsigned int remotePort; // holds received packet's originating port
const int analogOutPins[] = { 3,5,6,9}; // pins 10 and 11 used by ethernet shield

void setup() {
Ethernet.begin(mac,ip);
Udp.begin(localPort);
Serial.begin(9600);
Serial.println("Ready");
}

void loop() {
// if there's data available, read a packet
packetSize = Udp.available();
if(packetSize > 0)

packetSize = packetSize - 8; // 8 byte UDP header so subtract 8 bytes
Serial.print("Received packet of size ");

Serial.print(packetSize);

Serial.println(" with contents:");

// read packet into packetBuffer and get sender's IP addr and port number
packetSize = min(packetSize,UDP_TX PACKET MAX SIZE);
Udp.readPacket(packetBuffer,UDP_TX PACKET MAX SIZE, remotelp, &remotePort);

for(int i=0; i < packetSize; i++)
{
byte value = packetBuffer[i];
if(i< 4)

// only write to the first four analog out pins
analoghrite(analogOutPins[i], value);

Serial.println(value, DEC);

Serial.println();
// tell the sender the values of our analog ports
sendAnalogValues(remoteIp, remotePort);

//wait a bit
delay(10);

void sendAnalogValues(byte targetIp[], int targetPort)
{

int index = 0;

for(int i=0; i < 6; i++)

{

int value = analogRead(i);

packetBuffer[index++] = lowByte(value); // the low byte);
packetBuffer[index++] = highByte(value); // the high byte); }
}
//send a packet to specified peer
Udp.sendPacket (packetBuffer, index, targetIp, targetPort);

}

15.13 Sending and Receiving Simple Messages (UDP) | 499

The sketch sends and receives the values on analog ports O through 5 using binary data.
If you are not familiar with messages containing binary data, see the introduction to
Chapter 4, as well as Recipes 4.6 and 4.7, for a detailed discussion on how this is done
on Arduino.

The difference here is that the data is sent using UdpSendPacket instead of Serial.print.

Here is a Processing sketch you can use with the preceding sketch. It has six scroll bars
that can be dragged with a mouse to set the six analoghrite levels; it prints the received
sensor data to the Processing text window:

/*

* UDPTest
*

* Demo to send and receive data from Arduino using UDP
*/
import hypermedia.net.*;
UDP udp; // define the UDP object
HScrollbar[] scroll = new HScrollbar[6]; //see: topics/gui/scrollbar
void setup() {
size(256, 200);
noStroke();
for(int i=0; i < 6; i++) // create the scroll bars

scroll[i] = new HScrollbar(0, 10 + (height / 6) * i, width, 10, 3*5+1);

udp = new UDP(this, 6000); // create a new datagram connection on port 6000

//udp.log(true); // <-- print out the connection activity
udp.listen(true); // and wait for incoming message
}
void draw()
background(255);
£i11(255);

for(int i=0; i < 6; i++) {
scroll[i].update();
scroll[i].display();

}
}
void keyPressed() {
String ip = "192.168.1.177"; // the remote IP address
int port = 8888; // the destination port

byte[] message = new byte[6] ;

for(int i=0; i < 6; i++){
message[i] = byte(scroll[i].getPos());
println(int(message[i]));

println();
udp.send(message, ip, port);

500 | Chapter15: Ethernetand Networking

void receive(byte[] data) { // <-- default handler
//void receive(byte[] data, String ip, int port) { // <-- extended handler

println("incoming data is:");

for(int i=0; i < 6; i++){
scroll[i].setPos(data[i]);
println((int)data[i]);

}
class HScrollbar
{
int swidth, sheight; // width and height of bar
int xpos, ypos; // x and y position of bar
float spos, newspos; // x position of slider
int sposMin, sposMax; // max and min values of slider
int loose; // how loose/heavy
boolean over; // is the mouse over the slider?

boolean locked;
float ratio;

HScrollbar (int xp, int yp, int sw, int sh, int 1) {
swidth = sw;
sheight = sh;
int widthtoheight = sw - sh;
ratio = (float)sw / (float)widthtoheight;
Xpos = Xp;
ypos = yp-sheight/2;
spos = xpos + swidth/2 - sheight/2;
newspos = spos;
sposMin = xpos;
sposMax = xpos + swidth - sheight;
loose = 1;

}

void update() {

if(over()) {
over = true;

} else {
over = false;

}

if(mousePressed && over) {
locked = true;

}

if(!mousePressed) {
locked = false;

}
if(locked) {
newspos = constrain(mouseX-sheight/2, sposMin, sposMax);

if(abs(newspos - spos) > 1) {

15.13 Sending and Receiving Simple Messages (UDP) | 501

spos = spos + (newspos-spos)/loose;

}

int constrain(int val, int minv, int maxv) {
return min(max(val, minv), maxv);

}

boolean over() {
if(mouseX > xpos && mouseX < xpos+swidth 8&
mouseY > ypos 8& mouseY < ypos+sheight) {
return true;
} else {
return false;
}
}

void display() {
fi11(255);
rect(xpos, ypos, swidth, sheight);
if(over || locked) {
fill(153, 102, 0);
} else {
fill1(102, 102, 102);

rect(spos, ypos, sheight, sheight);
}

float getPos() {
return spos * ratio;

}

void setPos(int value) {
spos = value / ratio;
}
}

15.14 Getting the Time from an Internet Time Server

Problem

You want to get the current time from an Internet time server; for example, to syn-
chronize clock software running on Arduino.

Solution

This sketch gets the time from a Network Time Protocol (NTP) server and prints the
results as seconds since January 1, 1900 (NTP time) and seconds since January 1, 1970:
/*
* UdpNtp sketch
*

* Get the time from an NTP time server

502 | Chapter15: Ethernetand Networking

* Demonstrates use of UDP sendPacket and ReceivePacket

*/

#if ARDUINO > 18
#tinclude <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <Udp.h>

byte mac[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OXED }; // MAC address to use
byte ip[] = { 192, 168, 1, 44 }; // Arduino's IP address

unsigned int localPort = 8888; // local port to listen for UDP packets
byte time dot nist dot gov[] = { 192, 43, 244, 18}; // time.nist.gov NTP server

const int NTP_PACKET SIZE= 48; // NTP time stamp is in the first 48 bytes of the
message

byte packetBuffer[NTP_PACKET SIZE]; // buffer to hold incoming/outgoing packets
void setup()

// start Ethernet and UDP
Ethernet.begin(mac,ip);
Udp.begin(localPort);

Serial.begin(9600);
}

void loop()
{

sendNTPpacket(time_dot nist dot gov); // send an NTP packet to a time server
// wait to see if a reply is available
delay(1000);
if (Udp.available()) {
Udp.readPacket (packetBuffer,NTP_PACKET SIZE); // read packet into buffer

//the timestamp starts at byte 40, convert four bytes into a long integer

unsigned long hi = word(packetBuffer[40], packetBuffer[41]);

unsigned long low = word(packetBuffer[42], packetBuffer[43]);

unsigned long secsSince1900 = hi << 16 | low; // this is NTP time (seconds
since Jan 1 1900)

Serial.print("Seconds since Jan 1 1900 = ");
Serial.println(secsSince1900);

Serial.print("Unix time = ");

// Unix time starts on Jan 1 1970

const unsigned long seventyYears = 2208988800UL;

unsigned long epoch = secsSince1900 - seventyYears; // subtract 70 years
Serial.println(epoch); // print Unix time

15.14 Getting the Time from an Internet Time Server | 503

// print the hour, minute and second:
// UTC is the time at Greenwich Meridian (GMT)
Serial.print("The UTC time is ");
// print the hour (86400 equals secs per day)
Serial.print((epoch % 86400L) / 3600);
Serial.print(':"');
// print the minute (3600 equals secs per minute)
Serial.print((epoch % 3600) / 60);
Serial.print(':"');
Serial.println(epoch %60); // print the second
}
// wait ten seconds before asking for the time again
delay(10000);

// send an NTP request to the time server at the given address
unsigned long sendNTPpacket(byte *address)
memset(packetBuffer, 0, NTP_PACKET SIZE); // set all bytes in the buffer to 0

// Initialize values needed to form NTP request
packetBuffer[0] = B11100011; // LI, Version, Mode

packetBuffer[1] = 0; // Stratum
packetBuffer[2] = 6; // Max Interval between messages in seconds
packetBuffer[3] = OxEC; // Clock Precision

// bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by memset
packetBuffer[12] = 49; // four byte reference ID identifying
packetBuffer[13] OX4E;

packetBuffer[14] 49;

packetBuffer[15] = 52;

// send the packet requesting a timestamp:
Udp.sendPacket(packetBuffer,NTP_PACKET SIZE, address, 123); //NTP requests
are to port 123

}

Discussion

NTP is a protocol used to synchronize time through Internet messages. NTP servers
provide time as a value of the number of seconds that have elapsed since January 1,
1900. NTP time is UTC (Coordinated Universal Time, similar to Greenwich Mean
Time) and does not take time zones or daylight saving time into account.

NTP servers use UDP messages; see Recipe 15.13 for an introduction to UDP. An NTP
message is constructed in the function named sendNTPpacket and you are unlikely to
need to change the code in that function. The function takes the address of an NTP
server; you can use the IP address in the preceding example or find a list of many more
using “NTP address” as a search term in Google. If you want more information about
the purpose of the NTP fields, see the documentation at http://www.ntp.org/.

The reply from NTP is a message with a fixed format; the time information consists of
four bytes starting at byte 40. These four bytes are a 32-bit value (an unsigned long

504 | Chapter15: Ethernetand Networking

http://www.ntp.org/

integer), which is the number of seconds since January 1, 1900. This value (and the
time converted into Unix time) is printed. If you want to convert the time from an NTP
server to the friendlier format using hours, minutes, and seconds and days, months,
and years, you can use the Arduino Time library (see Chapter 12). Here is a variation
on the preceding code that prints the time as 14:32:56 Monday 18 Jan 2010:

/*
Time_NTP sketch
Example showing time sync to NTP time source

*
*
*
* This sketch uses the Time library
* and the Arduino Ethernet library

*/

#include <Time.h>

#if ARDUINO > 18

#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Udp.h>
#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OxBE, OXEF, OxFE, OXED };
byte iP[] = { 192, 168, 1, 44 };

unsigned int localPort = 8888; // local port to listen for UDP packets
byte time_dot nist dot gov[] = { 192, 43, 244, 18}; // time.nist.gov

const int NTP_PACKET SIZE= 48; // NTP time stamp is in first 48 bytes of message
byte packetBuffer[NTP_PACKET_SIZE]; // buffer to hold incoming/outgoing packets

time_t prevDisplay = 0; // when the digital clock was displayed
void setup()

Serial.begin(9600);

Ethernet.begin(mac,ip);

Udp.begin(localPort);

Serial.println("waiting for sync");

setSyncProvider(getNtpTime);

while(timeStatus()== timeNotSet)

5 // wait until the time is set by the sync provider

}

void loop()
{
if(now() != prevDisplay) //update the display only if the time has changed
prevDisplay = now();
digitalClockDisplay();

}
}

15.14 Getting the Time from an Internet Time Server | 505

void digitalClockDisplay(){
// digital clock display of the time
Serial.print(hour());
printDigits(minute());
printDigits(second());
Serial.print(" ");
Serial.print(dayStr(weekday()));
Serial.print(" ");
Serial.print(day());
Serial.print(" ");
Serial.print(monthShortStr(month()));
Serial.print(" ");
Serial.print(year());
Serial.println();

}

void printDigits(int digits){
// utility function for digital clock display: prints preceding colon and
leading o
Serial.print(":");
if(digits < 10)
Serial.print('o"');
Serial.print(digits);

unsigned long getNtpTime()

sendNTPpacket (time_dot nist_dot gov);
delay(1000);
if (Udp.available()) {
Udp.readPacket(packetBuffer,NTP_PACKET SIZE); // read packet into the buffer

//the timestamp starts at byte 40, convert four bytes into a long integer
unsigned long hi = word(packetBuffer[40], packetBuffer[41]);
unsigned long low = word(packetBuffer[42], packetBuffer[43]);
// this is NTP time (seconds since Jan 1 1900
unsigned long secsSince1900 = hi << 16 | low;
// Unix time starts on Jan 1 1970
const unsigned long seventyYears = 2208988800UL;
unsigned long epoch = secsSincel900 - seventyYears; // subtract 70 years
return epoch;
}

return 0; // return 0 if unable to get the time

}

// send an NTP request to the time server at the given address
unsigned long sendNTPpacket(byte *address)

memset(packetBuffer, 0, NTP_PACKET SIZE); // set all bytes in the buffer to 0

// Initialize values needed to form NTP request
packetBuffer[0] = B11100011; // LI, Version, Mode

506 | Chapter15: Ethernetand Networking

packetBuffer[1] = 0; // Stratum
packetBuffer[2] = 6; // Max Interval between messages in seconds
packetBuffer[3] = OxEC; // Clock Precision

// bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by memset

packetBuffer[12] = 49; // four-byte reference ID identifying
packetBuffer[13] = Ox4E;

packetBuffer[14] = 49;

packetBuffer[15] = 52;

// send the packet requesting a timestamp:

// NTP requests are to port 123

Udp.sendPacket(packetBuffer,NTP_PACKET_SIZE, address, 123);
}

See Also
Chapter 12 provides more information on using the Arduino Time library.

Details on NTP are available at http://www.ntp.org/.

NTP code by Jesse Jaggars that inspired the sketch used in this recipe is available at
http://github.com/cynshard/arduino-ntp.

15.15 Monitoring Pachube Feeds

Problem

You want Arduino to respond to information on a web service that offers security and
data backup. Perhaps you want to activate a device or raise an alarm based on the value
of data on Pachube.

Solution

This sketch gets the first four data fields from feed number 504 and prints the results
on the Serial Monitor:
#if ARDUINO > 18

#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include <TextFinder.h>

const int feedID = 504; // this is the ID of the
remote Pachube feed that you want to connect to
const int streamCount = 4; // Number of data streams to get

const long REFRESH_INTERVAL = 600000; // Update every 10 minutes
const long RETRY_INTERVAL = 10000; // if connection fails/resets
wait 10 seconds before trying again - should not be less than 5

#define PACHUBE_API KEY "your key here . . ." // fill in your API key

15.15 Monitoring Pachube Feeds | 507

http://www.ntp.org/
http://github.com/cynshard/arduino-ntp

// mac address, make sure this is unique on your network
byte mac[] = { 0xCC, OXAC, OxBE, OXEF, OxFE, 0x91 };
byte remoteServer[] = { 209,40,205,190 }; // pachube.com

byte ip[] = { 192, 168, 1, 144 }; // no DHCP so set IP address
byte gateway[] ={ 192, 168, 1, 254 };
byte subnet[] ={ 255, 255, 255, 0 };

float streamData[streamCount]; // change float to long if needed for your data
char findBuffer [11]; // holds one numeric field - room for 10 characters
and the terminating null

Client client(remoteServer, 80);
TextFinder finder(client);

void setup()
{

Serial.begin(9600);
Ethernet.begin(mac, ip, gateway, subnet);

}

void loop()
{
if(getFeed(feedID, streamCount) == true)

for(int id = 0; id < streamCount; id++){
Serial.println(streamData[id]);

Serial.println("--");
delay(REFRESH_INTERVAL);

}

else

{
Serial.println("Unable to get feed");
delay(RETRY_INTERVAL);

}

}

// returns true if able to connect and get data for all requested streams
in this feed
boolean getFeed(int feedId, int streamCount)
{
boolean result = false;
Serial.print("Connecting feed "); Serial.print(feedId); Serial.print(" ... ");
if (client.connect()) {
client.print("GET /api/feeds/");
client.print(feedId);

// client.print(".csv HTTP/1.1\nHost: pachube.com\nX-PachubeApiKey: ");
client.print(".xml HTTP/1.1\nHost: pachube.com\nX-PachubeApiKey: ");
client.print(PACHUBE_API KEY);
client.print("\nUser-Agent: Arduino");
client.println("\n");

}

508 | Chapter15: Ethernetand Networking

else {
Serial.println("Connection failed");

}
if (client.connected()) {
Serial.println("Connected");
if(finder.find("HTTP/1.1") && finder.find("200 OK"))
result = processFeed(streamCount);
else
Serial.println("Dropping connection - no 200 OK");

}
else {
Serial.println("Disconnected");

client.stop();
client.flush();
return result;

}

int processFeed(int streamCount)

finder.find("<environment updated=");

finder.getString("T", "\"",findBuffer, sizeof(findBuffer)); // get the time
Serial.print("Values updated at ");

Serial.println(findBuffer);

int processed = 0;
for(int id = 0; id < streamCount; id++)

if(finder.find("<data id=")) //find next data field
if(finder.find("<value "))

finder.find(">"); // seek to the angle brackets
streamData[id] = finder.getValue();
processed++;

}

else {
Serial.print("unable to find Id field ");
Serial.println(id);
}
}

return(processed == streamCount); // return true iff got all data

Discussion

To start using Pachube, you have to sign up for an account, and the Pachube Quickstart
page explains how: http://community.pachube.com/?>q=node/4. Once you're signed up,
you will be emailed a username and API key. Add your key to the following line in the
sketch:

#define PACHUBE_API KEY "your key here . . ." // fill in your API key

15.15 Monitoring Pachube Feeds | 509

http://community.pachube.com/?q=node/4

Every Pachube feed (data source) has an identifying ID; this example sketch uses feed
504 (environmental data from the Pachube office). Feeds are accessed using the get
Feed method with the feed ID and the number of items of data to get passed as
arguments. If this is successful, getFeed returns true, and you can process the data using
the processFeed method. This returns the value for the data item you are interested in
(each data item is called a stream in Pachube).

15.16 Sending Information to Pachube

Problem

You want Arduino to update feeds on Pachube. For example, you want the values of
sensors connected to Arduino to be published on a Pachube feed.

Solution

This sketch reads temperature sensors connected to the analog input ports (see
Recipe 6.8) and sends the data to Pachube:

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

#include <Ethernet.h>
#include "Dhcp.h" // uses DHCP code from: http://blog.jordanterrell.com
#include <TextFinder.h>

const int feedID = 2955; // this is the ID of my float test feed
const int streamCount = 6; // Number of data streams to send

const long REFRESH_INTERVAL = 60000; // Update every minute

// if connection fails/resets wait 10 seconds before trying again

// should not be less than 5

const long RETRY_INTERVAL = 10000;

#tdefine PACHUBE_API KEY "Your key here . . . " // fill in your API key
// make sure this is unique on your network

byte mac[] = { oxCC, OxAC, OxBE, OXEF, OxFE, 0x91 };

byte remoteServer[] = { 209,40,205,190 }; // pachube.com

//used to store csv output and response strings (date is 26 chars)
char buffer[32];

Client client(remoteServer, 80);
TextFinder finder(client);

void setup()
{

Serial.begin(9600);
Serial.println("Getting ip address");

510 | Chapter15: Ethernetand Networking

if(Dhcp.beginWithDHCP(mac) == 1) { // begin method returns 1 if successful
delay(4000);

else {
Serial.println("unable to acquire ip address!");
while(true)
; // do nothing
}

}

void loop()
{

int data[streamCount];
buffer[o0] = 0;
char * bufPointer = buffer;
for(int id = 0; id < streamCount; id++)
{
float temperature = getTemperature(id) ;
formatFloat(temperature, 1, 8buffer[strlen(buffer)]); // format as xx.y
if(id < streamCount-1)
strcat(buffer, ","); // commas between all but last value

if(putFeed(feedID, streamCount) == true)

Serial.print("Feed updated: ");
Serial.println(buffer);
delay(REFRESH_INTERVAL);

else

{
Serial.println("Unable to update feed");
delay(RETRY_INTERVAL);

}

// returns true if able to connect and send data
boolean putFeed(int feedId, int streamCount)
{
boolean result = false;
Serial.print("Connecting feed "); Serial.print(feedId); Serial.print(" ... ");
if (client.connect()) {
client.print("PUT /api/feeds/");
client.print(feedId);
client.print(".csv HTTP/1.1\nHost: pachube.com\nX-PachubeApiKey: ");
//client.print(".xml HTTP/1.1\nHost: pachube.com\nX-PachubeApiKey: ");
client.print(PACHUBE_API KEY);
client.print("\nUser-Agent: Arduino");
client.print("\nContent-Type: text/csv\nContent-Length: ");
client.print(strlen(buffer));
client.print("\nConnection: close\n\n");
client.print(buffer);

client.println("\n");

15.16 Sending Information to Pachube | 511

else {
Serial.println("Connection failed");

}
if (client.connected()) {
Serial.println("Connected");
if(finder.find("HTTP/1.1") && finder.find("200 OK")){
finder.getString("Date: ", "\r",buffer, sizeof(buffer)); // store time
result = true;

}
else
Serial.println("Dropping connection - no 200 OK");
}
else {
Serial.println("Disconnected");
}

client.stop();
client.flush();
return result;

}
float getTemperature(int pin)

const int nbrSamples = 8; // take the average of 8 samples
int samples = 0;
for(int i=0; i < nbrSamples; i++)
samples = samples + analogRead(pin);
float t = samples / nbrSamples; // get the average value
t = (t /1024.0) * 500; // each degree C is 10mv
return t;

}

// returns the number of characters added to the buffer
int formatFloat(float number, byte digits, char *buf)

if ('buf)
return 0;
char * bufStart = buf; // store the start of the buffer
// Handle negative numbers
if (number < 0.0)

*puf++ = -5
number = -number;

}

// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8 t i=0; i<digits; ++i)

rounding /= 10.0;

number += rounding;

// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;

double remainder = number - (double)int part;
ultoa(int_part, buf, 10);

512 | Chapter15: Ethernetand Networking

buf = &buf[strlen(buf)];

// Print the decimal point, but only if there are digits
if (digits > 0)
*buf++ = 'L

// Extract digits from the remainder one at a time
while (digits-- > 0)

remainder *= 10.0;

int toPrint = int(remainder);
*puf++ = toPrint + '0';
remainder -= toPrint;

}

*puf = 0;

return buf-bufStart; // the number of characters added
}

Discussion

This is similar to Recipe 15.15, but here you use the putFeed method to send your
information to Pachube. This example sends information from temperature sensors,
and almost half the code is used to get and format this information in a form suitable
for display. See the chapter covering the type of sensor you want to use to find code
suitable for your application.

15.16 Sending Information to Pachube | 513

CHAPTER 16
Using, Modifying, and
Creating Libraries

16.0 Introduction

Libraries add functionality to the Arduino environment. They extend the commands
available to provide capabilities not available in the core Arduino language. Libraries
provide a way to add features that can be accessed from any of your sketches once you
have installed the library.

The Arduino software distribution includes built-in libraries that cover common tasks.
These libraries are discussed in Recipe 16.1.

Libraries are also a good way for people to share code that may be useful to others.
Many third-party libraries provide specialized capabilities; these can be downloaded
from the Arduino Playground and other sites. Libraries are often written to simplify the
use of a particular piece of hardware. Many of the devices covered in earlier chapters
use libraries to make it easier to connect to the devices.

Libraries can also provide a friendly wrapper around complex code to make it easier to
use. An example is the Wire library distributed with Arduino, which hides much of the
complexity of low-level hardware communications (see Chapter 13).

This chapter explains how to use and modify libraries. It also gives examples of how
to create your own libraries.

16.1 Using the Built-in Libraries

Problem

You want to use the libraries provided with the Arduino distribution in your sketch.

515

Solution
This recipe shows you how to use Arduino library functionality in your sketch.

To see the list of available libraries from the IDE menu, click Sketch—Import Library.
A list will drop down showing all the available libraries. The first dozen or so are the
libraries distributed with Arduino. A horizontal line separates thatlist from the libraries
that you download and install yourself.

Clicking on a library will add that library to the current sketch, by adding the following
line to the top of the sketch:

#include <nameOfThelibrarySelected.h>

This results in the functions within the library becoming available to use in your sketch.

W N
- The Arduino IDE updates its list of available libraries only when the IDE
"‘:\ is first started on your computer. If you install a library after the IDE is
T Q18 running, you need to close the IDE and restart for that new library to be

" recognized.

The Arduino libraries are documented in the reference at http://arduino.cc/en/Reference/
Libraries and each library includes example sketches demonstrating their use. Chap-
ter 1 has details on how to navigate to the examples in the IDE.

The libraries that are included with Arduino as of version 0022 are:

EEPROM
Used to store and read information in memory that is preserved when power is
removed; see Chapter 18

Ethernet
Used to communicate with the Arduino Ethernet shield; see Chapter 15

Firmata
A protocol used to simplify serial communication and control of the board
LiquidCrystal
For controlling compatible LCD displays; see Chapter 11
Matrix
Helps manage a matrix of LEDs; see Chapter 7
SD
Supports reading and writing files to an SD card using external hardware

Servo
Used to control servo motors; see Chapter 8

SoftwareSerial
Enables additional serial ports

516 | Chapter16: Using, Modifying, and Creating Libraries

http://arduino.cc/en/Reference/Libraries
http://arduino.cc/en/Reference/Libraries

SPI
Used for Ethernet and SPI hardware; see Chapter 13
Sprite
Enables the use of sprites with an LED matrix
Stepper
For working with stepper motors; see Chapter 8
Wire
Works with 12C devices attached to the Arduino; see Chapter 13

Discussion

Libraries that work with specific hardware within the Arduino controller chip only
work on predefined pins. The Wire and SP1 libraries are examples of this kind of library.
Libraries that allow user selection of pins usually have this specified in setup; Servo,
LiquidCrystal, and Stepper are examples of this kind of library. See the library docu-
mentation for specific information on how to configure the library.

Including a library adds the library code to your sketch behind the scenes. This means
the size of your sketch, as reported at the end of the compilation process, will increase,
but the Arduino build process is smart enough to only include the code your sketch is
actually using from the library, so you don’t have to worry about the memory overhead
for methods that are not being used. Therefore, you also don’t have to worry about
unused functions reducing the amount of code you can put into your sketch.

See Also

The Arduino reference for libraries: http://arduino.cc/en/Reference/Libraries

16.2 Installing Third-Party Libraries

Problem

You want to use a library created for use with Arduino but not in the standard
distribution.

Solution

Download the library. It will often be a .zip file. Unzip it and you will have a folder that
has the same title as the name of the library. This folder needs to be put inside a folder
called libraries inside your Arduino document folder. To find the Arduino document
folder, launch Arduino and choose Sketch->Show Sketch Folder. Go up to the parent
directory of the folder that appears, and you’ll be in the Arduino document folder. If
no libraries folder exists, create one and put the library inside it.

16.2 Installing Third-Party Libraries | 517

http://arduino.cc/en/Reference/Libraries

If the Arduino IDE is running, quit the program and restart it. The IDE scans this folder
to find libraries only when it is launched. If you now go to the menu Sketch—Import
Library, at the bottom, below the gray line and the word Contributed, you should see
the library you have added.

If the libraries provide example sketches, you can view these from the IDE menu; click
File-Examples, and the libraries examples will be under the libraries name in a section
between the general examples and the Arduino distributed library example listing.

Discussion

A large number of libraries are provided by third parties. Many are of very high quality,
are actively maintained, and provide good documentation and example sketches. The
Arduino Playground is a good place to look for libraries: http://www.arduino.cc/play
ground/.

Look for libraries that have clear documentation and examples. Check out the Arduino
forums to see if there are any threads (discussion topics) that discuss the library. Li-
braries that were designed to be used with early Arduino releases may have problems
when used with the latest Arduino version, so you may need to read through a lot of
material (some threads for popular libraries contain hundreds of posts) to find infor-
mation on using an older library with the latest Arduino release.

If the library examples do not appear in the Examples menu or you get a message saying
“Library not found” when you try to use the library, check that the libraries folder
is in the correct place with the name spelled correctly. A library folder named
<LibraryName> (where <LibraryName> is the name for the library) must contain a
file named <LibraryName>.h with the same spelling and capitalization. Check that
additional files needed by the library are in the folder.

16.3 Modifying a Library

Problem

You want to change the behavior of an existing library, perhaps to extend its capability.
For example, the TimeAlarms library in Chapter 12 only supports six alarms and you
need more (see Recipe 12.5).

Solution

The Time and TimeAlarms libraries are described in Chapter 12, so refer to Rec-
ipe 12.5 to familiarize yourself with the standard functionality. The libraries can
be downloaded from the website for this book, or from http://www.arduino.cc/play
ground/uploads/Code/Time.zip (this download includes both libraries).

518 | Chapter16: Using, Modifying, and Creating Libraries

http://www.arduino.cc/playground/
http://www.arduino.cc/playground/
http://oreilly.com/catalog/9780596802486/
http://www.arduino.cc/playground/uploads/Code/Time.zip
http://www.arduino.cc/playground/uploads/Code/Time.zip

Once you have the Time and TimeAlarms libraries installed, compile and upload the
following sketch, which will attempt to create seven alarms—one more than the libra-

ries support. Each Alarm task simply prints its task number:

/*

multiple_alarms sketch

has more timer repeats than the library supports out of the box -
you will need to edit the header file to enable more than 6 alarms

*/

#include <Time.h>

#include <TimeAlarms.h>

int currentSeconds = 0;

void setup()

Serial.begin(9600);

// create 7 alarm tasks

Alarm.timerRepeat(1,
Alarm.timerRepeat(2,
Alarm.timerRepeat(3,
Alarm.timerRepeat(4,
Alarm.timerRepeat(5,
Alarm.timerRepeat(6,
Alarm.timerRepeat(7,

void repeatTask1()

Serial.print("task 1

}

void repeatTask2()
Serial.print("task 2

void repeatTask3()

Serial.print("task 3
}

void repeatTask4()

{

Serial.print("task 4

void repeatTasks()

Serial.print("task 5

void repeatTaské6()

repeatTask1);
repeatTask2);
repeatTask3);
repeatTask4);
repeatTasks);
repeatTaske);
repeatTask7);

");

");

");

");

");

//7th timer repeat

16.3 Modifying a Library | 519

Serial.print("task 6 ");

void repeatTask7()

Serial.print("task 7 ");

void loop()
{
if(second() != currentSeconds)

// print the time for each new second

// the task numbers will be printed when the alarm for that task is triggered
Serial.println();
Serial.print(second());
Serial.print("->");
currentSeconds = second();
Alarm.delay(1); //Alarm.delay must be called to service the alarms

}

}

Open the Serial Monitor and watch the output being printed. After nine seconds of
output, you should see this:

1->task 1

2->task 1 task 2

3->task 1 task 3

4->task 1 task 2 task 4

5->task 1 task 5

6->task 1 task 2 task 3 task 6
7->task 1

8->task 1 task 2 task 4

9->task 1 task 3

The task scheduled for seven seconds did not trigger because the library only provides
six timer “objects” that you can use.

You can increase this by modifying the library. Go to the libraries folder in your Arduino
Documents folder.

You can locate the directory containing the sketchbook folder by click-
ing on the menu item File—Preferences in the IDE. A dialog box will
* s open, showing the sketchbook location.

If you have installed the Time and TimeAlarms libraries (both libraries are in the
file you downloaded), navigate to the Libraries\TimeAlarms folder. Open the
TimeAlarms.h header file (for more details about header files, see Recipe 16.4). You
can edit the file with any text editor; for example, Notepad on Windows or TextEdit
on a Mac.

520 | Chapter16: Using, Modifying, and Creating Libraries

You should see the following at the top of the TimeAlarms.h file:

#ifndef TimeAlarms_h
#define TimeAlarms_h

#include <inttypes.h>
#include "Time.h"
#define dtNBR_ALARMS 6

The maximum number of alarms is specified by the value defined for dtNbr ALARMS.

Change:
#define dtNBR_ALARMS 6

to:
#define dtNMBR_ALARMS 7

and save the file.

Upload the sketch to your Arduino again, and this time the serial output should read:

1->task 1

2->task 1 task 2

3->task 1 task 3

4->task 1 task 2 task 4

5->task 1 task 5

6->task 1 task 2 task 3 task 6
7->task 1 task 7

8->task 1 task 2 task 4
9->task 1 task 3

You can see that task 7 now activates after seven seconds.

Discussion

Capabilities offered by a library are a trade-off between the resources used by the library
and the resources available to the rest of your sketch, and it is often possible to change
these capabilities if required. For example, you may need to decrease the amount of
memory used for a serial library so that other code in the sketch has more RAM. Or
youmay need to increase the memory usage by a library for your application. The library
writer generally creates the library to meet typical scenarios, but if your application
needs capabilities not catered to by the library writer, you may be able to modify the
library to accommodate them.

In this example, the TimeAlarms library allocates room (in RAM) for six alarms. Each
of these consumes around a dozen bytes and the space is reserved even if only a few
are used. The number of alarms is set in the library header file (the header is a file named
TimeAlarms.h in the TimeAlarms folder). Here are the first few lines of TimeAlarms.h:

#ifndef TimeAlarms_h
#define TimeAlarms_h

#include <inttypes.h>

16.3 Modifying a Library | 521

#include "Time.h"
#define dtNBR_ALARMS 6

In the TimeAlarms library, the maximum number of alarms is set using a #define state-
ment. Because you changed it and saved the header file when you recompiled the sketch
to upload it, it uses the new upper limit.

Sometimes constants are used to define characteristics such as the clock speed of the
board, and when used with a board that runs at a different speed, you will get unex-
pected results. Editing this value in the header file to the correct one for the board you
are using will fix this problem.

If you edit the header file and the library stops working, you can always download the
library again and replace the whole library to return to the original state.

See Also

Recipe 16.4 has more details on how you can add functionality to libraries.

16.4 Creating Your Own Library

Problem

You want to create your own library. Libraries are a convenient way to reuse code across
multiple sketches and are a good way to share with other users.

Solution

A library is a collection of methods and variables that are combined in a format that
enables users to access functions and variables in a standardized way.

Most Arduino libraries are written as a class. If you are familiar with C++ or Java, you
will be familiar with classes. However, you can create a library without using a class,
and this recipe shows you how.

This recipe explains how you can transform the sketch from Recipe 7.1 to move the
BlinkLED function into a library.

See Recipe 7.1 for the wiring diagram and an explanation of the circuit. Here is the
sketch that will be the starting point for the library:

/*

* blinkLibTest

*/

const int firstLedPin = 3; // choose the pin for each of the LEDs
const int secondlLedPin = 5;

const int thirdLedPin = 6;

522 | Chapter16: Using, Modifying, and Creating Libraries

void setup()
{

pinMode(firstLedPin, OUTPUT); // declare LED pins as output
pinMode(secondLedPin, OUTPUT); // declare LED pins as output
pinMode(thirdLedPin, OUTPUT); // declare LED pins as output

}
void loop()
{

// flash each of the LEDs for 1000 milliseconds (1 second)
blinkLED(firstLedPin, 1000);
blinkLED(secondLedPin, 1000);
blinkLED(thirdLedPin, 1000);
}

The blinkLED function from Recipe 7.1 should be removed from the sketch and moved
into a separate file named blinkLED.cpp (see the Discussion for more details
about .cpp files):
/* blinkLED.cpp
* simple library to light an LED for a duration given in milliseconds
*/
#include <WProgram.h> // Arduino includes
#include "blinkLED.h"

// blink the LED on the given pin for the duration in milliseconds
void blinkLED(int pin, int duration)

digitalWrite(pin, HIGH); // turn LED on
delay(duration);

digitalWrite(pin, LOW); // turn LED off
delay(duration);

Create the blinkLED.h header file as follows:

/*
* blinkLED.h
* Library header file for BlinkLED library

*/

void blinkLED(int pin, int duration); // function prototype

Discussion

The library will be named blinkLED and will be located in the libraries folder (see
Recipe 16.2).

The blinkLED function from Recipe 7.1 is moved out of the sketch and into a library
file named blink LED.cpp (the .cpp extension stands for “C plus plus” and contains the
executable code).

16.4 Creating Your Own Library | 523

The terms functions and methods are used in Arduino library documen-
tation to refer to blocks of code such as blinkLED. The term method was
Qs introduced to refer to the functional blocks in a class. Both terms refer
" to the named functional blocks that are made accessible by a library.

The blinkLED.cpp file contains a blinkLED function that is identical to the code from
Recipe 7.1 with the following two lines added at the top:

#include <WProgram.h> // Arduino includes
#include "blinkLED.h"

The #include <WProgram.h> line is needed by a library that uses any Arduino functions
or constants. Without this, the compiler will report errors for all the Arduino functions
used in your sketch.

The next line, #include "blinkLED.h", contains the function definitions (also known
as prototypes) for your library. The Arduino build process creates prototypes for all the
functions within a sketch automatically when a sketch is compiled—but it does not
create any prototypes for library code, so if you make a library, you must create a header
with these prototypes. It is this header file that is added to a sketch when you import
a library from the IDE (see Recipe 16.1).

W

\

Every library must have a file that declares the names of the functions

to be exposed. This file is called a header file (also known as an in-

Ws' clude file) and has the form <LibraryName>.h (where <Library-

° Name> is the name for your library). In this example, the header file is
named blinkLED.h and is in the same folder as blink LED.cpp.

The header file for this library is simple. It declares the one function:

void blinkLED(int pin, int duration); // function prototype

This looks similar to the function definition in the blinkLED.cpp file:
void blinkLED(int pin, int duration)

The difference is subtle but vital. The header file prototype contains a trailing semico-
lon. This tells the compiler that this is just a declaration of the form for the function
but not the code. The source file, blinkLED.cpp, does not contain the trailing
semicolon and this informs the compiler that this is the actual source code for the
function.

B
)

Libraries can have more than one header file and more than one imple-
mentation file. But there must be at least one header and that must
vl match the library name. It is this file that is included at the top of the
" sketch when you import a library.

524 | Chapter16: Using, Modifying, and Creating Libraries

A good book on C++ can provide more details on using header and .cpp files to create
code modules. This recipe’s See Also section lists some popular choices.

With the blinkLED.cpp and blinkLED.h files in the correct place within the libraries
folder, close the IDE and reopen it.

W
«‘ The Arduino IDE updates its list of available libraries only when the IDE
"‘:\ is first started on your computer. If you create a library after the IDE is
T Wa running, you need to close the IDE and restart for that library to be

recognized.

Upload the blinkLibTest sketch and you should see the three LEDs blinking.

It’s easy to add additional functionality to the library. For example, you can add some
constant values for common delays so that users of your libraries can use the descriptive
constants instead of millisecond values.

Add the three lines with constant values to your header file as follows:

// constants for duration

const int BLINK_SHORT = 250;
const int BLINK_MEDIUM = 500;
const int BLINK_LONG = 1000;

void blinkLED(int pin, int duration); // function prototype

Change the code in loop as follows and upload the sketch to see the different blink rates:
void loop()
blinkLED(firstLedPin, BLINK_SHORT);

blinkLED(secondLedPin, BLINK_MEDIUM);
blinkLED(thirdLedPin, BLINK_LONG);

}
W
- You need to close and restart the IDE when you first add the library to
L) the libraries folder, but not after subsequent changes to the library. Li-
“w N L. . . .
* ks braries included in Arduino release 0017 and later are recompiled each

" time the sketch is compiled. Arduino releases eatlier than 0017 required
the deletion of the library object files to make the library recompile and
for changes to be included.

New functions can be easily added. This example adds a function that continues blink-
ing for the number of times given by the sketch. Here is the loop code:

void loop()
{

blinkLED(firstLedPin,BLINK_SHORT,5); // blink 5 times
blinkLED(secondLedPin,BLINK MEDIUM,3); // blink 3 times
blinkLED(thirdLedPin, BLINK_LONG); // blink once

}

16.4 Creating Your Own Library | 525

To add this functionality to the library, add the prototype to blink LED.h as follows:
/*
* BlinkLED.h

* Header file for BlinkLED library
*/

const int BLINK SHORT = 250;
const int BLINK MEDIUM = 500;
const int BLINK LONG = 1000;

void blinkLED(int pin, int duration);
// new function for repeat count
void blinkLED(int pin, int duration, int repeats);

Add the function into blink LED.cpp:
/*
* BlinkLED.cpp
*/

#include <WProgram.h> // Arduino includes
#include "BlinkLED.h"

// blink the LED on the given pin for the duration in milliseconds
void blinkLED(int pin, int duration)

digitalWrite(pin, HIGH); // turn LED on
delay(duration);

digitalWrite(pin, LOW); // turn LED off
delay(duration);

/* function to repeat blinking
void blinkLED(int pin, int duration, int repeats)

while(repeats)

blinkLED(pin, duration);
repeats = repeats -1;
}
}

You can create a keywords.txt file if you want to add syntax highlighting (coloring the
keywords used in your library when viewing a sketch in the IDE). This is a text file that
contains the name of the keyword and the keyword type—each type uses a different
color. The keyword and type must be separated by a tab (not a space). For example,
save the following file as keywords.txt in the blink LED folder:

HHEHHHH
Methods and Functions (KEYWORD2)
HHEHHHH
blinkLED KEYWORD2

HHEHHHH
Constants (LITERAL1)

HHEHHHH

526 | Chapter16: Using, Modifying, and Creating Libraries

BLINK_SHORT LITERAL1
BLINK_MEDIUM LITERAL1
BLINK_LONG LITERAL1

See Also

“Writing a Library for Arduino” reference document: http://www.arduino.cc/en/Hack
ing/LibraryTutorial

Also see the following books on C++:

* Practical C++ Programming by Steve Oualline (O’Reilly)
* C++ Primer Plus by Stephen Prata (Sams)

* C++ Primer by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo (Addison-
Wesley Professional)

16.5 Creating a Library That Uses Other Libraries

Problem

You want to create a library that uses functionality from one or more existing libraries.
For example, you want to create a library to aid debugging that sends print output to
a second Arduino board using the Wire library.

Solution

This recipe uses the Wire library discussed in Chapter 13 and the core Arduino print
functionality to create a new library that sends printed output to another Arduino board
connected using I2C. The connections and code are covered in Recipe 13.9. This recipe
describes how that code can be converted into a library.

Create a folder named i2cDebug in the libraries directory (see Recipe 16.4 for details
on the file structure for a library). Create a file named i2cDebug.h with the following
code:

/*
* i2cDebug.h
*/

#include <WProgram.h>
#include <Print.h> // the Arduino print class

class I2CDebugClass : public Print
{
private:
int I2CAddress;
byte count;
void write(byte c);
public:
I2CDebugClass();

16.5 Creating a Library That Uses Other Libraries | 527

http://www.arduino.cc/en/Hacking/LibraryTutorial
http://www.arduino.cc/en/Hacking/LibraryTutorial
http://oreilly.com/catalog/9780596004194/

boolean begin(int id);

};
extern I2CDebugClass i2cDebug; // the i2c debug object

Create a file named i2cDebug.cpp in the i2cDebug folder as follows:
/*
* i2cDebug.cpp
*/
#include <i2cDebug.h>

#include <Wire.h> // the Arduino I2C library

I2CDebugClass: :I2CDebugClass()

{
}
boolean I2CDebugClass::begin(int id)
{
I2CAddress = id; // save the slave's address
Wire.begin(); // join I2C bus (address optional for master)
return true;
}
void I2CDebugClass::write(byte c)
{
if(count == 0)
// here if the first char in the transmission
Wire.beginTransmission(I2CAddress); // transmit to device
Wire.send(c);
// if the I2C buffer is full or an end of line is reached, send the data
// BUFFER_LENGTH is defined in the Wire library
if(++count >= BUFFER_LENGTH || c == '\n")
// send data if buffer full or newline character
Wire.endTransmission();
count = 0;
}
}

I2CDebugClass i2cDebug; // Create an I2C debug object

Load this example sketch into the IDE:
/*
* i2cDebug
* example sketch for i2cDebug library

*/

#include <Wire.h> // the Arduino I2C library
#include <i2cDebug.h>

528 | Chapter16: Using, Modifying, and Creating Libraries

const int address = 4; //the address to be used by the communicating devices
const int sensorPin = 0; // select the analog input pin for the sensor
int val; // variable to store the sensor value

void setup()

Serial.begin(9600);
i2cDebug.begin(address);

}
void loop()
{

// read the voltage on the pot(val ranges from 0 to 1023)
val = analogRead(sensorPin);
Serial.println(val);
i2cDebug.println(val);
}

Remember that you need to restart the IDE after creating the library folder. See Rec-
ipe 16.4 for more detail on creating a library.

Upload the slave 12C sketch onto another Arduino board as described in Recipe 13.9,
and you should see the output from the Arduino board running your library displayed
on the second board.

Discussion

To include another library, use its include statement in your code as you would in a
sketch. It is sensible to include information about any additional libraries that your
library needs in documentation if you make it available for others to use, especially if
it requires a library that is not distributed with Arduino.

This recipe provides an example of how to use a class when creating a library. A class
is a programming technique for grouping functions and variables together. The fol-
lowing references provide an introduction to classes:

* Programming Interactivity by Joshua Noble (O’Reilly)

* C++ Primer by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo (Addison-
Wesley Professional)

16.5 Creating a Library That Uses Other Libraries | 529

http://oreilly.com/catalog/9780596154158/

CHAPTER 17
Advanced Coding and
Memory Handling

17.0 Introduction

As you do more with your Arduino, your sketches need to become more efficient. The
techniques in this chapter can help you improve the performance and reduce the code
size of your sketches. If you need to make your sketch run faster or use less RAM, the
recipes here can help. The recipes here are more technical than most of the other recipes
in this book because they cover things that are usually concealed by the friendly Arduino
wrapper.

The Arduino build process was designed to hide complex aspects of C and C++ as well
as the tools used to convert a sketch into the bytes that are uploaded and run on an
Arduino board. But if your project has performance and resource requirements beyond
the capability of the standard Arduino environment, you should find the recipes here
useful.

The Arduino board uses memory to store information. It has three kinds of memory:
program memory, random access memory (RAM), and EEPROM. Each has different
characteristics and uses. Many of the techniques in this chapter cover what to do if you
do not have enough of one kind of memory.

Program memory (also known as flash) is where the executable sketch code is stored.
The contents of program memory can only be changed by the bootloader in the upload
process initiated by the Arduino software running on your computer. After the upload
process is completed, the memory cannot be changed until the next upload. There is
far more program memory on an Arduino board than RAM, so it can be beneficial to
store values that don’t change while the code runs (e.g., constants) in program memory.
The bootloader takes up some space in program memory. If all other attempts to min-
imize the code to fit in program memory have failed, the bootloader can be removed
to free up space, but an additional hardware programmer is then needed to get code
onto the board.

531

If your code is larger than the program memory space available on the chip, the upload
will not work and the IDE will warn you that the sketch is too big when you compile.

RAM is used by the code as it runs to store the values for the variables used by your
sketch (including variables in the libraries used by your sketch). RAM is volatile, which
means it can be changed by code in your sketch. It also means anything stored in this
memory is lost when power is switched off. Arduino has much less RAM than program
memory. If you run out of RAM while your sketch runs on the board (as variables are
created and destroyed while the code runs) the board will misbehave (crash).

EEPROM (Electrically Erasable Programmable Read-Only Memory) is memory that
code running on Arduino can read and write, but it is nonvolatile memory that retains
values even when power is switched off. EEPROM access is significantly slower than
for RAM, so EEPROM is usually used to store configuration or other data that is read
at startup to restore information from the previous session.

To understand these issues, it is helpful to understand how the Arduino IDE prepares
your code to go onto the chip and how you can inspect the results it produces.

Preprocessor

Some of the recipes here use the preprocessor to achieve the desired result. Preprocessing
is a step in the first stage of the build process in which the source code (your sketch) is
prepared for compiling. Various find and replace functions can be performed. Prepro-
cessor commands are identified by lines that start with #. You have already seen them
in sketches that use a library—#include tells the preprocessor to insert the code from
the named library file. Sometimes the preprocessor is the only way to achieve what is
needed, but its syntax is different from C and C++ code, and it can introduce bugs that
are subtle and hard to track down, so use it with care.

See Also

AVRfreaks is a website for software engineers that is a good source for technical detail
on the controller chips used by Arduino: http://www.avrfreaks.net

Technical details on the C preprocessor are available at http://gcc.gnu.org/onlinedocs/
gcc-2.95.3/cpp_1.html.

17.1 Understanding the Arduino Build Process

Problem

You want to see what is happening under the covers when you compile and upload a

sketch.

532 | Chapter17: Advanced Coding and Memory Handling

http://www.avrfreaks.net
http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html
http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html

Solution

To see all the command-line activity that takes place, hold down the Shift key when
you click on Compile or Upload. The console area at the bottom of the IDE will display
details of the compile process.

To have this detail always visible, you can change a value in the Arduino preferen-
ces.txt file. This file should be in the following locations:

Mac
/Users/<USERNAME>/Library/Arduino/preferences.txt

Windows XP
C\Documents and Settings\<USERNAME>\Application Data\Arduino\preferen-
ces.txt

Windows Vista
c:\Users\<sUSERNAME>\AppData\Roaming\Arduino\preferences.txt

Linux
~/.arduino/preferences.txt

Make sure the Arduino IDE is not running (changes made to preferences.txt will not be
saved if the IDE is running). Open the file and find the line build.verbose=false (it is
near the bottom of the file). Change false to true and save the file.

Discussion

When you click on Compile or Upload, a lot of activity happens that is not usually
displayed on-screen. The command-line tools that the Arduino IDE was built to hide
are used to compile, link, and upload your code to the board.

First your sketch file(s) are transformed into a file suitable for the compiler (AVR-
GCCQ) to process. All source files in the sketch folder that have no file extension are
joined together to make one file. All files that end in .c or .cpp are compiled separately.
Header files (with an .h extension) are ignored unless they are explicitly included in the
files that are being joined.

#include "WProgram.h" is added at the top of the file to include the header file with all
the Arduino-specific code definitions, such as digitalWrite() and analogRead(). If you
want to examine its contents, you can find the file on Windows under the directory
where Arduino was installed; from there, you can navigate to
Hardware->Arduino->Cores—Arduino.

On the Mac, Ctrl+click the Arduino application icon and select Show Package Contents
from the drop-down menu. A folder will open; from the folder, navigate to Con-
tents—Resources—Java—~Hardware—Arduino—~Cores—Arduino.

17.1 Understanding the Arduino Build Process | 533

The Arduino directory structure may change in new releases, so check
the documentation for the release you are using.

To make the code valid C++, the prototypes of any functions declared in your code are
generated next and inserted.

Finally, the setting of the board menu is used to insert values (obtained from the
boards.txt file) that define various constants used for the controller chips on the selected

board.

This file is then compiled by AVR-GCC, which is included within the Arduino main
download (it is in the tools folder).

The compiler produces a number of object files (files with an extension of .o that will
be combined by the link tool). These files are stored in /tmp on Mac and Linux. On
Windows, they are in the applet directory (a folder below the Arduino install directory).

The object files are then linked together to make a HEX file to upload to the board.
Avrdude, a utility for transferring files to the Arduino controller, is used to upload to

the board.

The tools used to implement the build process can be found in the hardware\tools
directory.

Another useful tool for experienced programmers is avr-objdump, also in the tools
folder. It lets you see how the compiler turns the sketch into code that the controller
chip runs. This tool produces a disassembly listing of your sketch which shows the
object code intermixed with the source code. It can also display a memory map of all
the variables used in your sketch. To use the tool, compile the sketch and navigate to
the folder containing the Arduino distribution. Then, navigate to the folder with all the
intermediate files used in the build process (as explained earlier). The file used by
avr-objdump is the one with the extension .elf. For example, if you compile the Blink
sketch you could view the compiled output (the machine code) by executing the fol-
lowing on the command line:

..\hardware\tools\avr\bin\avr-objdump.exe -S blink.cpp.elf
It is convenient to direct the output to a file that can be read in a text editor. You can
do this as follows:

..\hardware\tools\avr\bin\avr-objdump.exe -S blink.cpp.elf > blink.txt
This version adds a list of section headers (helpful for determining memory usage):

..\hardware\tools\avr\bin\avr-objdump.exe -S -h blink.cpp.elf > blink.txt

534 | Chapter17: Advanced Coding and Memory Handling

You can create a batch file to dump the listing into a file. Add the path

of your Arduino installation to the following line and save it to a batch
N .

* sy file:

hardware\tools\avr\bin\avr-objdump.exe -S -h -Tdata %1 > %1%.txt

See Also

For information on the Arduino build process, see http://code.google.com/p/arduino/
wiki/BuildProcess.

The AVRfreaks website: http://www.avrfreaks.net/wiki/index.php/Documentation:AVR
_GCC

17.2 Determining the Amount of Free and Used RAM

Problem

You want to be sure you have not run out of RAM. A sketch will not run correctly if
there is insufficient memory, and this can be difficult to detect.

Solution

This recipe shows you how you can determine the amount of free memory available to
your sketch. This sketch contains a function called memoryFree that reports the amount
of available RAM:

void setup()
{

Serial.begin(9600);

void loop()
{

Serial.print(memoryFree()); // print the free memory
Serial.print(' '); // print a space
delay(1000);

// variables created by the build process when compiling the sketch
extern int _ bss end;
extern void * brkval;

// function to return the amount of free RAM
int memoryFree()

int freeValue;

17.2 Determining the Amount of Free and Used RAM | 535

http://code.google.com/p/arduino/wiki/BuildProcess
http://code.google.com/p/arduino/wiki/BuildProcess
http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC
http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC

if((int)__brkval == 0)

freeValue = ((int)&freeValue) - ((int)&_ bss_end);
else

freeValue = ((int)&freeValue) - ((int)_ brkval);

return freeValue;

}

Discussion

The memoryFree function uses system variables to calculate the amount of RAM. System
variables are not normally visible (they are created by the compiler to manage internal
resources). It is not necessary to understand how the function works to use its output.
The function returns the number of bytes of free memory.

The number of bytes your code uses changes as the code runs. The important thing is
to ensure that you don’t consume more memory than you have.

Here are the main ways RAM memory is consumed:

* When you initialize constants:

#define ERROR_MESSAGE "an error has occurred”
* When you declare global variables:

char myMessage[] = "Hello World";
* When you make a function call:

void myFunction(int value)

int result;
result = value * 2;
return result;

}

* When you dynamically allocate memory:
String stringOne = "Arduino String";
The Arduino String class uses dynamic memory to allocate space for strings. You can
see this by adding the following line to the very top of the code in the Solution:
String s = "\n";
and the following lines just before the delay in the loop code:

s = s + "Hello I am Arduino \n";
Serial.println(s); // print the string value

You will see the memory value reduce as the size of the string is increased each time
through the loop. If you run the sketch long enough, the memory will run out—don’t
endlessly try to increase the size of a string in anything other than a test application.

Writing code like this that creates a constantly expanding value is a sure way to run
out of memory. You should also be careful not to create code that dynamically creates

536 | Chapter17: Advanced Coding and Memory Handling

different numbers of variables based on some parameter while the code runs, as it will
be very difficult to be sure you will not exceed the memory capabilities of the board
when the code runs.

Constants and global variables are often declared in libraries as well, so you may not
be aware of them, but they still use up RAM. The Serial library, for example, has a 128-
byte global array that it uses for incoming serial data. This alone consumes one-eighth
of the total memory of an old Arduino 168 chip.

See Also

A technical overview of memory usage is available at http://lwww.gnu.org/savannah
-checkouts/mon-gnu/avr-libc/user-manual/malloc. html.

17.3 Storing and Retrieving Numeric Values in
Program Memory

Problem

You have a lot of constant numeric data and don’t want to allocate this to RAM.

Solution

Store numeric variables in program memory (the flash memory used to store Arduino
programs).

This sketch adjusts a fading LED for the nonlinear sensitivity of human vision. It stores
the values to use in a table of 256 values in program memory rather than RAM.

The sketch is based on Recipe 7.2; see Chapter 7 for a wiring diagram and discussion
on driving LEDs. Running this sketch results in a smooth change in brightness with the
LED on pin 5 compared to the LED on pin 3:
/* ProgmemCurve sketch
* uses table in Progmem to convert linear to exponential output
* See Recipe 7.2 and Figure 7-2

*/
#include <avr/pgmspace.h> // needed for PROGMEM

// table of exponential values
// generated for values of i from 0 to 255 -> x=round(pow(2.0, i/32.0) - 1);

const byte table[JPROGMEM = {
6 o0 o0 o0 o0 O0 ©O0 o0 o0 o0 o0 O o o0 o0 O
6 o o0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
L, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
2, 2) 2: 2, 2) 21 2, 2, 2: 2; 3, 3; 3; 3, 3, 3,
3, 3, 3, 3, 3 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5,

17.3 Storing and Retrieving Numeric Values in Program Memory | 537

http://www.gnu.org/savannah-checkouts/non-gnu/avr-libc/user-manual/malloc.html
http://www.gnu.org/savannah-checkouts/non-gnu/avr-libc/user-manual/malloc.html

5 5 5 5 5 5 5 6, 6, 6, 6, 6, 6, 6, 71, 7,
7 7, 1, 8, & 8 8 8 9, 9, 9, 9, 9, 10, 10, 10,
0, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15,
15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21,
22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30,
31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62,
63, 64, 66, 67, 69, 70, 72, 73, 75, 77, 78, 80, 82, 84, 86, 88,
90, 91, 94, 96, 98, 100, 102, 104, 107, 109, 111, 114, 116, 119, 122, 124,
127, 130, 133, 136, 139, 142, 145, 148, 151, 155, 158, 161, 165, 169, 172, 176,
180, 184, 188, 192, 196, 201, 205, 210, 214, 219, 224, 229, 234, 239, 244, 250

};

const int rawLedPin = 3; // this LED is fed with raw values
const int adjustedLedPin = 5; // this LED is driven from table

int brightness = 0;
int increment = 1;

void setup()
{

// pins driven by analogWrite do not need to be declared as outputs

void loop()
{ if(brightness > 255)
increment = -1; // count down after reaching 255
else if(brightness < 1)

increment = 1; // count up after dropping back down to 0

}

brightness = brightness + increment; // increment (or decrement sign is minus)

// write the brightness value to the LEDs

analoghirite(rawLedPin, brightness); // this is the raw value

int adjustedBrightness = pgm read byte(&table[brightness]); // adjusted value
analoghrite(adjustedLedPin, adjustedBrightness);

delay(10); // 10ms for each step change means 2.55 secs to fade up or down

}

Discussion

When you need to use a complex expression to calculate a range of values that regularly
repeat, it is often better to precalculate the values and include them in a table of values
(usually as an array) in the code. This saves the time needed to calculate the values
repeatedly when the code runs. The disadvantage concerns the memory needed to place
these values in RAM. RAM is limited on Arduino and the much larger program memory
space can be used to store constant values. This is particularly helpful for sketches that
have large arrays of numbers.

538 | Chapter17: Advanced Coding and Memory Handling

At the top of the sketch, the table is defined with the following expression:

const byte table[]PROGMEM = {
0, . ..

PROGMEM tells the compiler that the values are to be stored in program memory rather
than RAM. The remainder of the expression is similar to defining a conventional array
(see Chapter 2).

The low-level definitions needed to use PROGMEM are contained in a file named
pgmspace.h and the sketch includes this as follows:

#include <avr/pgmspace.h>

To adjust the brightness to make the fade look uniform, this recipe adds the following
lines to the LED output code used in Recipe 7.2:

int adjustedBrightness = pgm read byte(&table[brightness]);
analoghrite(adjustedLedPin, adjustedBrightness);

The variable adjustedBrightness is set from a value read from program memory. The
expression pgm_read byte(&table[brightness]); means to return the address of the
entry in the table array at the index position given by brightness. Each entry in the
table is one byte, so another way to write this expression is:

pgm_read _byte(table + brightness);

If it is not clear why &table[brightness] is equivalent to table + brightness, don’t
worry; use whichever expression makes more sense to you.

Another example is from Recipe 6.5, which used a table for converting an infrared
sensor reading into distance. Here is the sketch from that recipe converted to use a table
in program memory instead of RAM:

/* ir-distance Progmem sketch
* prints distance & changes LED flash rate depending on distance from IR sensor
* uses progmem for table

*/
#include <avr/pgmspace.h> // needed when using Progmem

// table entries are distances in steps of 250 millivolts

const int TABLE_ENTRIES = 12;

const int firstElement = 250; // first entry is 250 mV

const int interval = 250; // millivolts between each element

// the following is the definition of the table in Program Memory
const int distanceP[TABLE_ENTRIES] PROGMEM = { 150,140,130,100,60,50,
40,35,30,25,20,15 };

// This function reads from Program Memory at the given index
int getTableEntry(int index)
{

int value = pgm read word(&distanceP[index]);

return value;

}

17.3 Storing and Retrieving Numeric Values in Program Memory | 539

The remaining code is similar to Recipe 6.5, except that the getTableEntry function is
used to get the value from program memory instead of accessing a table in RAM. Here
is the revised getDistance function from that recipe:

int getDistance(int mv)
if(mv > interval * TABLE_ENTRIES)
return getTableEntry(TABLE ENTRIES-1); // the minimum distance
else
{
int index = mV / interval;
float frac = (mV % 250) / (float)interval;

return getTableEntry(index) - ((getTableEntry(index) -
getTableEntry(index+1)) * frac);

}

17.4 Storing and Retrieving Strings in Program Memory

Problem

You have lots of strings and they are consuming too much RAM. You want to move
string constants, such as menu prompts or debugging statements, out of RAM and into
program memory.

Solution

This sketch creates a string in program memory and prints its value to the Serial Mon-
itor. The amount of free RAM is printed using the function described in Recipe 17.2:

#include <avr/pgmspace.h> // for progmem

//create a string of 20 characters in progmem
const prog_uchar myText[] = "arduino duemilanove ";

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.print(memoryFree()); // print the free memory

Serial.print(' '); // print a space
printP(myText); // print the string
delay(1000);

// function to print a PROGMEM string
void printP(const prog_uchar *str)

540 | Chapter17: Advanced Coding and Memory Handling

{

char c;

while((c = pgm_read byte(str++)))
Serial.print(c,BYTE);

// variables created by the build process when compiling the sketch
extern int _ bss_end;
extern void * brkval;

// function to return the amount of free RAM
int memoryFree()

int freeValue;

if((int)__brkval == 0)

freeValue = ((int)&freeValue) - ((int)8_ bss end);
else

freeValue = ((int)8freeValue) - ((int)_ brkval);

return freeValue;

}

Discussion

Strings are particularly hungry when it comes to RAM. Each character uses a byte, so
it is easy to consume large chunks of RAM if you have lots of words in strings in your
sketch.

The #include at the top is required for the code needed to access program memory:
#include <avr/pgmspace.h> // for progmem

Program memory string declarations begin with const prog_uchar followed by the name
of the string variable and then the string characters:

const prog_uchar myText[] = "arduino duemilanove
in progmem

; //a string of 20 characters

You can use the following expression to create a preprocessor macro that makes your
string declarations easier to write. Add the following line to the top of the sketch:

#define P(name) const prog_uchar name[] PROGMEM // declare a PROGMEM string
Wherever you use P(name), the expression will be replaced with the full expansion. So,
the following code would declare the same string as in the earlier sketch:

P(myTextP) = "arduino duemilanove "; //a string of 20 characters in progmem

(This uses a preprocessing macro, a subject not covered in this book, but you can find
links to more information on the preprocessor in this chapter’s introduction section.)

17.4 Storing and Retrieving Strings in Program Memory | 541

If you change the sketch to use a conventional RAM string, you will see that the free
RAM increases by at least 20 bytes:

char myText[] = "arduino duemilanove "; //a string of 20 characters
void setup()

Serial.begin(9600);
}

void loop()
{

Serial.print(memoryFree()); // print the free memory

Serial.print(' '); // print a space
Serial.print(myText); // print the string
delay(1000);

17.5 Using #define and const Instead of Integers

Problem

You want to minimize RAM usage by telling the compiler that the value is constant and
can be optimized.

Solution
Use const to declare values that are constant throughout the sketch.
For example, instead of:

int ledPin=13;

use:

const int ledPin=13;

Discussion

We often want to use a constant value in different areas of code. Just writing the number
is a really bad idea. If you later want to change the value used, it’s difficult to work out
which numbers scattered throughout the code also need to be changed. It is best to use
named references.

Here are three different ways to define a value that is a constant:

int ledPin = 13; // a variable, but this wastes RAM
const int ledPin = 13; // a const does not use RAM
#define ledPin 13 // using a #define

// the preprocessor replaces ledPin with 13

pinMode(ledPin, OUTPUT);

542 | Chapter17: Advanced Coding and Memory Handling

Although the first two expressions look similar, the term const tells the compiler not
to treat ledPin as an ordinary variable. Unlike the ordinary int, no RAM is reserved to
hold the value for the const, as it is guaranteed not to change. The compiler will produce
exactly the same code as if you had written:

pinMode (13, OUTPUT);

You will sometimes see #define used to define constants in older Arduino code, but
const is a better choice than #define. This is because a const variable has a type, which
enables the compiler to verify and report if the variable is being used in ways not ap-
propriate for that type. The compiler will also respect C rules for the scope of a const
variable. A #define value will affect all the code in the sketch, which may be more than
you intended. Another benefit of const is that it uses familiar syntax—#define does not
use the equals sign, and no semicolon is used at the end.

See Also

See this chapter’s introduction section for more on the preprocessor.

17.6 Using Conditional Compilations

Problem

You want to have different versions of your code that can be selectively compiled. For
example, you may need code to work differently when debugging or when running
with different boards.

Solution

You can use the conditional statements aimed at the preprocessor to control how your
sketch is built.

This example from sketches in Chapter 15 includes the SPLh library file that is only
available for and needed with Arduino versions released after 0018:

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

This example, using the sketch from Recipe 5.6, displays some debug statements only
if DEBUG is defined:
/*
Pot_Debug sketch
blink an LED at a rate set by the position of a potentiometer

Uses Serial port for debug if DEBUG is defined
*/

const int potPin
const int ledPin

0; // select the input pin for the potentiometer
13; // select the pin for the LED

17.6 Using Conditional Compilations | 543

int val = 0; // variable to store the value coming from the sensor
#define DEBUG
void setup()

Serial.begin(9600);
pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT
}

void loop() {
val = analogRead(potPin); // read the voltage on the pot
digitalWrite(ledPin, HIGH); // turn the ledPin on

delay(val); // blink rate set by pot value
digitalWrite(ledPin, LOW); // turn the ledPin off
delay(val); // turn LED off for same period as it was turned on

#if defined DEBUG
Serial.println(val);

#endif

}

Discussion

This recipe uses the preprocessor used at the beginning of the compile process to change
what code is compiled. The first example tests if the value of the constant ARDUINO is
greater than 18, and if so, the file SPLh is included. The value of the ARDUINO constant
is defined in the build process and corresponds to the Arduino release version. The
syntax for this expression is not the same as that used for writing a sketch. Expressions
that begin with the # symbol are processed before the code is compiled—see this chap-
ter’s introduction section for more on the preprocessor.

You have already come across #include:

#include <library.h>
The < > brackets tell the compiler to look for the file in the location for standard
libraries:

#include "header.h"
The compiler will also look in the sketch folder.

You can have a conditional compile based on the controller chip selected in the IDE.
For example, the following code will produce different code when compiled for a Mega
board that reads the additional analog pins that it has:
/*
* ConditionalCompile sketch
* This sketch recognizes the controller chip using conditional defines

*/

int numberOfSensors;
int val = 0; // variable to store the value coming from the sensor

544 | Chapter17: Advanced Coding and Memory Handling

void setup()
{
Serial.begin(9600);

#if defined(__AVR_ATmega1280_) // defined when selecting Mega in the IDE

numberOfSensors = 16; // the number of analog inputs on the Mega
#else // if not Mega then assume a standard board

numberOfSensors = 6; // analog inputs on a standard Arduino board
#endif

Serial.print("The number of sensors is ");
Serial.println(numberOfSensors);

void loop() {
for(int sensor = 0; sensor < numberOfSensors; sensor++)

{
val = analogRead(sensor); // read the sensor value
Serial.println(val); // display the value
Serial.println();
delay(1000); // delay a second between readings
See Also

Technical details on the C preprocessor are available at http://gcc.gnu.org/onlinedocs/
gcc-2.95.3/cpp_1.html.

17.6 Using Conditional Compilations | 545

http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html
http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html

CHAPTER 18
Using the Controller Chip Hardware

18.0 Introduction

The Arduino platform simplifies programming by providing easy-to-use function calls
to hide complex, low-level hardware functions. But some applications need to bypass
the friendly access functions to get directly at hardware, either because that’s the only
way to get the needed functionality or because higher performance is required. This
chapter shows how to access and use hardware functions that are not fully exposed
through the documented Arduino language.

W8

Changing register values can change the behavior of some Arduino
functions (e.g., millis). The low-level capabilities described in this
98¢ chapter require care, attention, and testing if you want your code to
" function correctly.

Registers

Registers are variables that refer to hardware memory locations. They are used by the
chip to configure hardware functions or for storing the results of hardware operations.
The contents of registers can be read and written by your sketch. Changing register
values will change the way the hardware operates, or the state of something (such as
the output of a pin). Some registers represent a numerical value (the number a timer
will count to). Registers can control or report on hardware status; for example, the state
of a pin or if an interrupt has occurred. Registers are referenced in code using their
names—these are documented in the data sheet for the microcontrollers. Setting a
register to a wrong value usually results in a sketch functioning incorrectly, so carefully
check the documentation to ensure that you are using registers correctly.

547

Interrupts

Interrupts are signals that enable the controller chip to stop the normal flow of a sketch
and handle a task that requires immediate attention before continuing with what it was
doing. Arduino core software uses interrupts to handle incoming data from the serial
port, to maintain the time for the delay and millis functions, and to trigger the
attachInterrupt function. Libraries, such as Wire and Servo, use interrupts when an
event occurs, so the code doesn’t have to constantly check to see if the event has hap-
pened. This constant checking, called polling, can complicate the logic of your sketch.
Interrupts can be a reliable way to detect signals of very short duration. Recipe 18.2
explains how to use interrupts to determine if a digital pin has changed state.

Two or more interrupts may occur before the handling of the first interrupt is comple-
ted; for example, if two switches are pressed at the same time and each generates a
different interrupt. The interrupt handler for the first switch must be completed before
the second interrupt can get started. Interrupts should be brief, because an interrupt
routine that takes too much time can cause other interrupt handlers to be delayed or
to miss events.

W N

Arduino services one interrupt at a time. It suspends pending interrupts
while it deals with an interrupt that has happened. Code to handle in-
W terrupts (called the interrupt handler, or interrupt service routine) should
" be brief to prevent undue delays to pending interrupts. An interrupt
routine that takes too much time can cause other interrupt handlers to
miss events. Activities that take a relatively long time, such as blinking
an LED or even serial printing, should be avoided in an interrupt

handler.

Timers

A standard Arduino board has three hardware timers for managing time-based tasks
(the Mega has six). The timers are used in a number of Arduino functions:

TimerO
Used for millis and delay; also analoghrite on pins 5 and 6

Timerl
analoghrite functions on pins 9 and 10; also driving servos using the Servo library

Timer2
analoghrite functions on pins 3 and 11

W

The Servo library uses the same timer as analoghrite on pins 9 and 10,
so you can’t use analoghrite with these pins when using the Servo
Wi library.

548 | Chapter18: Using the Controller Chip Hardware

The Mega has three additional 16-bit timers and uses different pin numbers with
analoghrite:

TimerO
analogWrite functions on pins 4 and 13

Timerl
analoghrite functions on pins 11 and 12

Timer2
analogWrite functions on pins 9 and 10

Timer3
analogWirite functions on pins 2, 3, and 5

Timer4
analogWrite functions on pins 6, 7, and 8

Timer5
analoghrite functions on pins 45 and 46

Timers are counters that count pulses from a time source, called a timebase. The timer
hardware consists of 8-bit or 16-bit digital counters that can be programmed to deter-
mine the mode the timer uses to count. The most common mode is to count pulses
from the timebase on the Arduino board, usually 16 MHz derived from a crystal; 16
MHz pulses repeat every 62.5 nanoseconds, and this is too fast for many timing appli-
cations, so the timebase rate is reduced by a divider called a prescaler. Dividing the
timebase by 8, for example, increases the duration of each count to half a microsecond.

For applications in which this is still too fast, other prescale values can be used (see
Table 18-1).

Timer operation is controlled by values held in registers that can be read and written
by Arduino code. The values in these registers set the timer frequency (the number of
system timebase pulses between each count) and the method of counting (up, down,
up and down, or using an external signal).

Here is an overview of the timer registers (n is the timer number):

Timer Counter Control Register A (TCCRnA)
Determines the operating mode

Timer Counter Control Register B (TCCRnB)
Determines the prescale value

Timer Counter Register (ICNTn)
Contains the timer count

Output Compare Register A (OCRnA)
Interrupt can be triggered on this count

Output Compare Register B (OCRnB)
Interrupt can be triggered on this count

18.0 Introduction | 549

Timer/Counter Interrupt Mask Register (TIMSKn)
Sets the conditions for triggering an interrupt

Timer/Counter 0 Interrupt Flag Register (TIFRn)
Indicates if the trigger condition has occurred

Table 18-1 is an overview of the bit values used to set the timer precision. Details of
the functions of the registers are explained in the recipes where they are used.

Table 18-1. Timer prescale values (16 MHz clock)

Prescale factor (Sx2, (Sx1,(Sx0 Precision Time to overflow
8-bittimer 16-bit timer

1 B001 62.5ns 16 ps 4.096 ms
8 B010 500 ns 128 ps 32.768 ms
64 BO11 4us 1,024 ps 262.144 ms
256 B100 16 ps 4,096 s 1048.576 ms
1,024 B101 64 ps 16,384 yis 4194.304 ms
B110 External clock, falling edge
B1M External clock, rising edge

All timers are initialized for a prescale of 64.

Precision in nanoseconds is equal to the CPU period (time for one CPU cycle) multiplied
by the prescale.

Analog and Digital Pins

Chapter 5 described the standard Arduino functions to read and write (to/from) digital
and analog pins. This chapter explains how you can control pins faster than using the
Arduino read and write functions and make changes to analog methods to improve
performance.

Some of the code in this chapter is more difficult to understand than the other recipes
in this book, as it is moving beyond Arduino syntax and closer to the underlying hard-
ware. These recipes work directly with the tersely named registers in the chip and use
bit shifting and masking to manipulate bits in them. The benefit from this complexity
is enhanced performance and functionality.

See Also

Overview of hardware resources: http://code.google.com/p/arduino/wiki/HardwareRe
sourceMap

Timerl (and Timer3) library: http://www.arduino.cc/playground/Code/Timer1
Tutorial on timers and PWM: http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

550 | Chapter18: Using the Controller Chip Hardware

http://code.google.com/p/arduino/wiki/HardwareResourceMap
http://code.google.com/p/arduino/wiki/HardwareResourceMap
http://www.arduino.cc/playground/Code/Timer1
http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

The Atmel ATmega 168/328 data sheets: http://www.atmel.com/dyn/resources/prod
_documents/doc8271.pdf

Atmel application note on how to set up and use timers: http://www.atmel.com/dyn/
resources/prod_documents/DOC2505.PDF

A thorough summary of information covering 8-bit timers: http:/www.cs.mun.ca/~rod/
Winter2007/4723/motes/timer0/timer0.html

Diagrams showing register settings for timer modes: http://web.alfredstate.edu/wei
mandn/miscellaneous/atmegal 68_subsystem/atmegal 68_subsystem_index.html

Wikipedia article on interrupts: http://en.wikipedia.org/wiki/Interrupts

18.1 Storing Data in Permanent EEPROM Memory

Problem

You want to store values that will be retained even when power is switched off.

Solution

Use the EEPROM library to read and write values in EEPROM memory. This sketch
blinks an LED using values read from EEPROM and allows the values to be changed
using the Serial Monitor:
/*
based on Blink without Delay

uses EEPROM to store blink values
*/
#include <EEPROM.h>
// these values are saved in EEPROM
const byte EEPROM ID = 0x99; // used to identify if valid data in EEPROM
byte ledPin = 13; // the number of the LED pin
int interval = 1000; // interval at which to blink (milliseconds)

// variables that do not need to be saved

int ledState = LOW; // ledState used to set the LED

long previousMillis = 0; // will store last time LED was updated
//constants used to identify EEPROM addresses

const int ID_ADDR = 0; // the EEPROM address used to store the ID
const int PIN ADDR = 1; // the EEPROM address used to store the pin

const int INTERVAL_ADDR = 2; // the EEPROM address used to store the interval
void setup()
{

Serial.begin(9600);

byte id = EEPROM.read(ID ADDR); // read the first byte from the EEPROM
if(id == EEPROM_ID)

18.1 Storing Data in Permanent EEPROM Memory | 551

http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.atmel.com/dyn/resources/prod_documents/DOC2505.PDF
http://www.atmel.com/dyn/resources/prod_documents/DOC2505.PDF
http://www.cs.mun.ca/~rod/Winter2007/4723/notes/timer0/timer0.html
http://www.cs.mun.ca/~rod/Winter2007/4723/notes/timer0/timer0.html
http://web.alfredstate.edu/weimandn/miscellaneous/atmega168_subsystem/atmega168_subsystem_index.html
http://web.alfredstate.edu/weimandn/miscellaneous/atmega168_subsystem/atmega168_subsystem_index.html
http://en.wikipedia.org/wiki/Interrupts

// here if the id value read matches the value saved when writing eeprom
Serial.println("Using data from EEPROM");
ledPin = EEPROM.read(PIN_ADDR);
byte hiByte = EEPROM.read(INTERVAL_ADDR);
byte lowByte = EEPROM.read(INTERVAL_ADDR+1);
interval = word(hiByte, lowByte); // see word function in Recipe 3.15
}
else
{
// here if the ID is not found, so write the default data
Serial.println("Writing default data to EEPROM");
EEPROM.write(ID_ADDR,EEPROM_ID); // write the ID to indicate valid data
EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom
byte hiByte = highByte(interval);
byte loByte = lowByte(interval);
EEPROM.write(INTERVAL ADDR, hiByte);
EEPROM.write(INTERVAL _ADDR+1, loByte);

}

Serial.print("Setting pin to ");
Serial.println(ledPin,DEC);
Serial.print("Setting interval to ");
Serial.println(interval);

pinMode(ledPin, OUTPUT);
}

void loop()
{

// this is the same code as the BlinkWithoutDelay example sketch
if (millis() - previousMillis > interval)

previousMillis = millis(); // save the last time you blinked the LED
// if the LED is off turn it on and vice versa:
if (ledState == LOW)
ledState = HIGH;
else
ledState = LOW;
digitalwWrite(ledPin, ledState); // set LED using value of ledState

processSerial();

// function to get duration or pin values from Serial Monitor
// value followed by i is interval, p is pin number
int value = 0;

void processSerial()

if(Serial.available())
{
char ch = Serial.read();
if(ch >= '0" &8 ch <= '9") // is this an ascii digit between 0 and 9?

{

552 | Chapter18: Using the Controller Chip Hardware

value = (value * 10) + (ch - '0'); // yes, accumulate the value

else if (ch == 'i') // is this the interval
{

interval = value;

Serial.print("Setting interval to ");
Serial.println(interval);

byte hiByte = highByte(interval);

byte loByte = lowByte(interval);

EEPROM.write(INTERVAL_ADDR, hiByte);
EEPROM.write(INTERVAL_ADDR+1, loByte);

value = 0; // reset to 0 ready for the next sequence of digits

else if (ch == 'p') // is this the pin number

{
ledPin = value;
Serial.print("Setting pin to ");
Serial.println(ledPin,DEC);
pinMode(ledPin, OUTPUT);
EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom
value = 0; // reset to 0 ready for the next sequence of digits

}

}
}

Open the Serial Monitor. As the sketch starts, it tells you whether it is using values
previously saved to EEPROM or defaults, if this is the first time the sketch is started.

You can change values by typing a number followed by a letter to indicate the action.
A number followed by the letter i changes the blink interval; a number followed by a
p changes the pin number for the LED.

Discussion

Arduino contains EEPROM memory that will store values even when power is switched
off. There are 512 bytes of EEPROM in a standard Arduino board, 4K bytes in a Mega.

The sketch uses the EEPROM library to read and write values in EEPROM memory.

Once the library is included in the sketch, an EEPROM object is available that accesses
the memory. The library provides methods to read, write, and clear. EEPROM.clear()
is not used in this sketch because it erases all the EEPROM memory.

The EEPROM library requires you to specify the address in memory that you want to
read or write. This means you need to keep track of where each value is written so that
when you access the value, it is from the correct address.

To write a value, you use EEPROM.write(address, value). The address is from 0 to 511
(on a standard Arduino board), and the value is a single byte.

To read, you use EEPROM.read(address). The byte content of that memory address is
returned.

18.1 Storing Data in Permanent EEPROM Memory | 553

The sketch stores three values in EEPROM. The first value stored is an ID value that is
used only in setup to identify if the EEPROM has been previously written with valid
data. If the value stored matches the expected value, the other variables are read from
EEPROM and used in the sketch. If it doesn’t match, this sketch has not been run on
this board (otherwise, the ID would have been written), so the default values are written,
including the ID value.

The sketch monitors the serial port and new values received are written to EEPROM.

The sketch stores the ID value in EEPROM address 0, the pin number in address 1, and
the two bytes for the interval start in address 2. The following line writes the pin number
to EEPROM. The variable ledPin is a byte, so it fits into a single EEPROM address:

EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom

Because interval is an int, it requires two bytes of memory to store the value:

byte hiByte = highByte(interval);

byte loByte = lowByte(interval);
EEPROM.write(INTERVAL_ADDR, hiByte);
EEPROM.write(INTERVAL_ADDR+1, loByte);

The preceding code splits the value into two bytes that are stored in two consecutive
addresses. Any additional variables to be added to EEPROM would need to be placed
in addresses that follow these two bytes.

Here is the code used to rebuild the int variable from EEPROM:

ledPin = EEPROM.read(PIN_ADDR);

byte hiByte = EEPROM.read(INTERVAL_ADDR);
byte lowByte = EEPROM.read(INTERVAL_ADDR+1);
interval = word(hiByte, lowByte);

See Chapter 3 for more on using the word expression to create an integer from two bytes.

For more complicated use of EEPROM, it is advisable to draw out a map of what is
being saved where, to ensure that no address is used by more than one value, and that
multibyte values don’t overwrite other information.

See Also

Recipe 3.14 provides more information on converting 16- and 32-bit values into bytes.

18.2 Using Hardware Interrupts

Problem

You want to perform some action when a digital pin changes value and you don’t want
to have to constantly check the pin state.

554 | Chapter18: Using the Controller Chip Hardware

Solution

This sketch monitors pulses on pin 2 and stores the duration in an array. When the
array has been filled (64 pulses have been received), the duration of each pulse is dis-
played on the Serial Monitor:

/*
Interrupts sketch

see Recipe 10.1 for connection diagram

*/

const int irReceiverPin = 2; //pin the receiver is connected to
const int numberOfEntries = 64;

volatile unsigned long microseconds;
volatile byte index = 0;
volatile unsigned long results[numberOfEntries];
void setup()
pinMode(irReceiverPin, INPUT);
Serial.begin(9600);
attachInterrupt(o, analyze, CHANGE); // encoder pin on interrupt 0 (pin 2);
results[0]=0;
void loop()
{
if(index >= numberOfEntries)

{

Serial.println("Durations in Microseconds are:") ;
for(byte i=0; i < numberOfEntries; i++)

Serial.println(results[i]);
ihile(l)
) 5
delay(1000);
void analyze()
if(index < numberOfEntries)
if(index > 0)
results[index] = micros() - microseconds;
index = index + 1;

}

microseconds = micros();

}

18.2 Using Hardware Interrupts | 555

If you have an infrared receiver module, you can use the wiring in Recipe 10.1 to meas-
ure the pulse width from an infrared remote control. You could also use the wiring in
Recipe 6.12 to measure pulses from a rotary encoder or connect a switch to pin 2 (see
Recipe 5.1) to test with a pushbutton.

Discussion

In setup the attachInterrupt(0, analyze, CHANGE); call enables the sketch to handle
interrupts. The first number in the call specifies which interrupt to initialize. On a
standard Arduino board, two interrupts are available: number 0, which uses pin 2, and
number 1 on pin 3. The Mega has four more: number 2, which uses pin 21, number 3
on pin 20, number 4 on pin 19, and number 5 on pin 18.

The next parameter specifies what function to call (sometimes called an interrupt han-
dler) when the interrupt event happens; analyze in this sketch.

The final parameter specifies what should trigger the interrupt. CHANGE means whenever
the pin level changes (goes from low to high, or high to low). The other options are:

Low: when the pin is low
RISING: when the pin goes from low to high
FALLING: when the pin goes from high to low

When reading code that uses interrupts, bear in mind that it may not be obvious when
values in the sketch change, because the sketch does not directly call the interrupt
handler; it’s called when the interrupt conditions occur.

In this sketch, the main loop checks the index variable to see if all the entries have been
set by the interrupt handler. Nothing in loop changes the value of index. index is
changed inside the analyze function when the interrupt condition occurs (pin 2 chang-
ing state). The index value is used to store the time since the last state change into the
next slot in the results array. The time is calculated by subtracting the last time the
state changed from the current time in microseconds. The current time is then saved
as the last time a change happened. (Chapter 12 describes this method for obtaining
elapsed time using themillis function; here micros is used to get elapsed microseconds
instead of milliseconds.)

The variables that are changed in an interrupt function are declared as volatile; this
lets the compiler know that the values could change at any time (by an interrupt han-
dler). Without using the volatile keyword, the compiler would think these variables
are not being changed by any code getting called and would replace these variables with
constant values.

Each time an interrupt is triggered, index is incremented and the current time is saved.
The time difference is calculated and saved in the array (except for the first time the
interrupt is triggered, when index is 0). When the maximum number of entries has
occurred, the inner block in loop runs, and it prints out all the values to the serial port.

556 | Chapter18: Using the Controller Chip Hardware

The code stays in the while loop at the end of the inner block, so you need to reset the
board when you want to do another run.

See Also

Recipe 6.12 has an example of external interrupts used to detect movement in a rotary
encoder.

18.3 Setting Timer Duration

Problem

You want to do something at periodic intervals, and you don’t want to have your code
constantly checking if the interval has elapsed. You would like to have a simple interface
for setting the period.

Solution

The easiest way to use a timer is through a library. The following sketch uses the
MsTimer2 library (http://www.arduino.cc/playground/Main/MsTimer2) to generate a
pulse with a period that can be set using the Serial Monitor. This sketch flashes pin 13
at a rate that can be set using the Serial Monitor:
/*
pulseTimer2
pulse a pin at a rate set from serial input

*/
#include <MsTimer2.h>
const int pulsePin = 13;

int period = 100; // 10 milliseconds
boolean output = HIGH; // the state of the pulse pin

void setup()
{

pinMode(pulsePin, OUTPUT);
Serial.begin(9600);

MsTimer2::set(period/2, flash);
MsTimer2::start();

period= 0; // reset to zero ready for serial input

}

void loop()
{

if(Serial.available())
{

char ch = Serial.read();

18.3 Setting Timer Duration | 557

http://www.arduino.cc/playground/Main/MsTimer2

if(ch >= '0' &% ch <= '9"') // is this an ascii digit between 0 and 9?

{

period = (period * 10) + (ch - '0'); // yes, accumulate the value

else if (ch == 10) // is the character the newline character

{

Serial.println(period);

MsTimer2::set(period/2, flash);

MsTimer2::start();

period = 0; // reset to 0 ready for the next sequence of digits

}
void flash()

digitalWrite(pulsePin, output);
output = loutput; // invert the output
}

Discussion

Enter digits for the desired period in milliseconds using the Serial Monitor. The sketch
accumulates the digits and divides the received value by 2 to calculate the duration of
the on and off states (the period is the sum of the on time and off time, so the smallest
value you can use is 2). Bear in mind that an LED flashing very quickly may not appear
to be flashing to the human eye.

B
)

This library uses Timer2, so it will prevent operation of analoghrite on
pins 3 and 11.
&

This library enables you to use Timer2 by providing the timing interval and the name
of the function to call when the interval has elapsed:

MsTimer2::set(period/2, flash);
This sets up the timer. The first parameter is the time for the timer to run in milliseconds.

The second parameter is the function to call when the timer gets to the end of that time
(the function is named flash in this recipe):

MsTimer2::start();

As the name implies, start starts the timer running. Another method, named stop,
stops the timer.

As in Recipe 18.2, the sketch code does not directly call the function to perform the
action. The LED is turned on and off in the flash function that is called by MsTimer2

558 | Chapter18: Using the Controller Chip Hardware

each time it gets to the end of its time setting. The code in loop deals with any serial
messages and changes the timer settings based on it.

Using a library to control timers is much easier than accessing the registers directly.
Here is an overview of the inner workings of this library: Timers work by constantly
counting to a value, signaling that they have reached the value, then starting again.
Each timer has a prescaler that determines the counting frequency. The prescaler divides
the system timebase by a factor such as 1, 8, 64, 256, or 1,024. The lower the prescale
factor, the higher the counting frequency and the quicker the timebase reaches its
maximum count. The combination of how fast to count, and what value to count to,
gives the time for the timer. Timer2 is an 8-bit timer; this means it can count up to 255
before starting again from zero. (Timerl and Timers 3, 4, and 5 on the Mega use 16
bits and can count up to 65,535.)

The MsTimer2 library uses a prescale factor of 64. On a 16 MHz Arduino board, each
CPU cycle is 62.5 nanoseconds long, and when this is divided by the prescale factor of
64, each count of the timer will be 40,000 nanoseconds (62.5 * 64 = 40,000, which is
four microseconds).

B
\
- Remember that when you directly use a timer in your sketch, built-in
ﬁ:\ functions that use that timer, such as analoghrite, may no longer work
N
s correctly.

(N

See Also

An easy-to-use library for interfacing with Timer2: http://www.arduino.cc/playground/
Main/MsTimer2

A collection of routines for interfacing with Timer1 (also Timer3 on the Mega): http://
www.arduino.cc/playground/Code/Timer1

18.4 Setting Timer Pulse Width and Duration

Problem

You want Arduino to generate pulses with a duration and width that you specify.

Solution

This sketch generates pulses within the frequency range of 1 MHz to 1 Hz using Timerl
PWM on pin 9:

#include <TimerOne.h>

#tdefine pwmRegister OCR1IA // the logical pin, can be set to OCR1B
const int outPin = 9; // the physical pin

18.4 Setting Timer Pulse Width and Duration | 559

http://www.arduino.cc/playground/Main/MsTimer2
http://www.arduino.cc/playground/Main/MsTimer2
http://www.arduino.cc/playground/Code/Timer1
http://www.arduino.cc/playground/Code/Timer1

long period = 10000; // the period in microseconds
long pulseWidth = 1000; // width of a pulse in microseconds

int prescale[] = {0,1,8,64,256,1024}; // the range of prescale values
void setup()
{

Serial.begin(9600);
pinMode(outPin, OUTPUT);
Timeri.initialize(period); // initialize timer1, 1000 microseconds
setPulseWidth(pulseWidth);
}

void loop()
{
}

bool setPulseWidth(long microseconds)

{

bool ret = false;

int prescaleValue = prescale[Timer1.clockSelectBits];

// calculate time per counter tick in nanoseconds

long precision = (F_CPU / 128000) * prescaleValue ;
period = precision * ICR1 / 1000; // period in microseconds
if(microseconds < period)

{
int duty = map(microseconds, 0,period, 0,1024);
if(duty < 1)
duty = 1;
if(microseconds > 0 && duty < RESOLUTION)

Timer1.pwm(outPin, duty);
ret = true;
}
}

return ret;

}

Discussion

You set the pulse period to a value from 1 to 1 million microseconds by setting the
value of the period at the top of the sketch. You can set the pulse width to any value in
microseconds that is less than the period by setting the value of pulseWidth.

The sketch uses the Timerl library from http://www.arduino.cc/playground/Code/Tim
erl.

Timerl is a 16-bit timer (it counts from zero to 65,535). It’s the same timer used by
analoglrite to control pins 9 and 10 (so you can’t use this library and analogWrite on
those pins at the same time). The sketch generates a pulse on pin 9 with a period and

560 | Chapter18: Using the Controller Chip Hardware

http://www.arduino.cc/playground/Code/Timer1
http://www.arduino.cc/playground/Code/Timer1

pulse width given by the values of the variables named period and pulsewidth. If you
want to use pin 10 instead of pin 9, you can make the following change:

#tdefine pwmRegister OCR1B // the logical pin

const int outPin = 10; // the physical pin - OCRIB is pin 10
OCR1A and OCR1B are constants that are defined in the code included by the Arduino core
software (OCR stands for Output Compare Register). Many different hardware regis-
ters in the Arduino hardware are not usually needed by a sketch (the friendly Arduino
commands hide the actual register names). But when you need to access the hardware
directly to get at functionality not provided by Arduino commands, these registers need
to be accessed. Full details on the registers are in the Atmel data sheet for the chip.

The sketch in this recipe’s Solution uses the following registers:

ICR1 (Input Compare Register for Timerl) determines the period of the pulse. This
register contains a 16-bit value which is used as the maximum count for the timer.
When the timer count reaches this value it will be reset and start counting again from
zero. In the sketch in this recipe’s Solution, if each count takes one microsecond and
the ICR1 value is set to 1000, the duration of each count cycle is 1,000 microseconds.

OCR1A (or OCR1B depending on which pin you want to use) is the Output Compare
Register for Timerl. When the timer count reaches this value (and the timer is in PWM
mode as it is here), the output pin will be set low—this determines the pulse width.
For example, if each count takes one microsecond and the ICR1 value is set to 1000 and
OCR1A is set to 100, the output pin will be HIGH for 100 microseconds and LOW for 900
microseconds (the total period is 1,000 microseconds).

The duration of each count is determined by the Arduino controller timebase frequency
(typically 16 MHz) and the prescale value. The prescale is the value that the timebase
is divided by. For example, with a prescale of 64, the timebase will be four microsec-
onds.

The Timerl1 library has many useful capabilities—see the Playground article for details
—but it does not provide for the setting of a specific pulse width. This functionality is
added by the function named setPulseWidth.

This function uses a value of ICR1 to determine the period:
int prescaleValue = prescale[Timerl.clockSelectBits];
The prescale value is set by a variable in the library named clockSelectBits. This var-

iable contains a value between 1 and 7—this is used as an index into the prescale array
to get the current prescale factor.

The duration for each count (precision) is calculated by multiplying the prescale value
by the duration of a timebase cycle:

long precision = (F_CPU / 128000) * prescaleValue ; // time per
counter tick in ns

18.4 Setting Timer Pulse Width and Duration | 561

http://www.arduino.cc/playground/Code/Timer1

The period is the precision times the value of the ICR1 register; it’s divided by 1,000 to
give the duration in microseconds:

period = precision * ICR1 / 1000; // period in microseconds
The Timerl library has a function named pwm that expects the duty cycle to be entered
as a ratio expressed by a value from 1 to 1,023 (where 1 is the shortest pulse and 1,023
is the longest). This value is calculated using the Arduino map function to scale the

microseconds given for the period into a proportional value of the period that ranges
from 1 to 1,023:

int duty = map(microseconds, 0,period, 1,1023);

18.5 Creating a Pulse Generator

Problem

You want to generate pulses from Arduino and control the characteristics from the
Serial Monitor.

Solution

This is an enhanced version of Recipe 18.4 that enables the frequency, period, pulse
width, and duty cycle to be set from the serial port:

#include <TimerOne.h>

const char SET_PERIOD_HEADER = 'p';
const char SET_FREQUENCY HEADER = 'f';
const char SET PULSE_WIDTH_HEADER = 'w';
const char SET DUTY_CYCLE HEADER = 'c';

#define pwmRegister OCR1IA // the logical pin, can be set to OCR1B
const int outPin = 9; // the physical pin

long period = 1000; // the period in microseconds
int duty = 512; // duty as a range from 0 to 1024, 512 is 50% duty cycle

int prescale[] = {0,1,8,64,256,1024}; // the range of prescale values
void setup()

Serial.begin(9600);

pinMode(outPin, OUTPUT);

Timeri.initialize(period); // initialize timeri, 1000 microseconds
Timer1.pwm(9, duty); // setup pwm on pin 9, 50% duty cycle

void loop()

562 | Chapter18: Using the Controller Chip Hardware

}

processSerial();

void processSerial()

{

st

i

{

atic long val = 0;
f (Serial.available())

char ch = Serial.read();

if(ch >= '0' &% ch <= '9") // is ch a number?

{ val = val * 10 + ch - '0'; // yes, accumulate the value

}
else if(ch == SET PERIOD HEADER)
{
period = val;
Serial.print("Setting period to ");
Serial.println(period);
Timerl.setPeriod(period);
Timeri.setPwmDuty(outPin, duty); // don't change the duty cycle
show();
val = 0;

}
else if(ch == SET_FREQUENCY_HEADER)

if(val > 0)
{
Serial.print("Setting frequency to ");
Serial.println(val);
period = 1000000 / val;
Timer1.setPeriod(period);
Timeri.setPwmDuty(outPin, duty); // don't change the duty cycle

show();
val = 0;

else if(ch == SET_PULSE_WIDTH_HEADER)

if(setPulseWidth(val)) {
Serial.print("Setting Pulse width to ");
Serial.println(val);
}
else
Serial.println("Pulse width too long for current period");
show();
val = 0;

else if(ch == SET_DUTY_CYCLE_HEADER)
if(val >0 &% val < 100)

Serial.print("Setting Duty Cycle to ");
Serial.println(val);

18.5 Creating a Pulse Generator | 563

}

duty = map(val,1,99, 1, ICR1);
pwmRegister = duty;
show();

val = 0;
}
}

bool setPulseWidth(long microseconds)

{

bool ret = false;

int prescaleValue = prescale[Timeri.clockSelectBits];
// calculate time per tick in ns
long precision = (F_CPU / 128000) * prescaleValue ;
period = precision * ICR1 / 1000; // period in microseconds
if(microseconds < period)
{

duty = map(microseconds, 0,period, 0,1024);

if(duty < 1)

duty = 1;
if(microseconds > 0 && duty < RESOLUTION)
{

Timer1.pwm(outPin, duty);

ret = true;
}

}

return ret;

void show()

}

Serial.print("The period is ");
Serial.println(period);

Serial.print("Duty cycle is ");

// pwnRegister is ICR1A or ICR1B

Serial.print(map(pwmRegister, 0,ICR1, 1,99));
Serial.println("%");

Serial.println();

Discussion

This sketch is based on Recipe 18.4, with the addition of serial code to interpret com-
mands to receive and set the frequency, period, pulse width, and duty cycle percent.
Chapter 4 explains the technique used to accumulate the variable val that is then used
for the desired parameter, based on the command letter.

You can add this function if you want to print instructions to the serial port:

void instructions()

{

564 |

Chapter 18: Using the Controller Chip Hardware

Serial.println("Send values followed by one of the following tags:");
Serial.println(" p - sets period in microseconds");

Serial.println(" f - sets frequency in Hz");

Serial.println(" w - sets pulse width in microseconds");
Serial.println(" c - sets duty cycle in %");

Serial.println("\n(duty cycle can have one decimal place)\n");

}

See Also
Recipe 18.4

18.6 Changing a Timer's PWM Frequency

Problem

You need to increase or decrease the Pulse Width Modulation (PWM) frequency used
with analoghrite (see Chapter 7). For example, you are using analoghrite to control a
motor speed and there is an audible hum because the PWM frequency is too high, or
you are multiplexing LEDs and the light is uneven because PWM frequency is too low.

Solution

You can adjust the PWM frequency by changing a register value. The register values
and associated frequencies are shown in Table 18-2.

Table 18-2. Adjustment values for PWM

Timer0 (pins 5 and 6)

Prescale factor
TCCROB value (divisor) Frequency
32(1) 1 62500
33(2) 8 7812.5
34 64 976.5625
35 256 244140625
36 1,024 61.03515625
Timer1 (pins 9 and 10)
TCCR1B prescale Prescale factor
value (divisor) Frequency
1 1 312500
2 8 3906.25
3 64 488.28125
4 256 122.0703125
5 1,024 30.517578125

18.6 Changing a Timer's PWM Frequency | 565

Timer2 (pins 11 and 3)

Prescale factor

TCCR2B value (divisor) Frequency

1 1 312500

2 8 3906.25

3 64 488.28125
4 256 122.0703125
5 1,024 30.517578125

All frequencies are in hertz and assume a 16 MHz system timebase. The default prescale
factor of 64 is shown in bold.

This sketch enables you to select a timer frequency from the Serial Monitor. Enter a
digit from 1 to 7 using the value in the lefthand column of Table 18-2 and follow this

with character a for Timer0, b for Timerl, and ¢ for Timer2:

const byte mask = B11111000; // mask bits that are not prescale values
int prescale = 0;

void setup()

Serial.begin(9600);
analoghrite(3,128);
analoghrite(5,128);
analoghrite(6,128);
analoghrite(9,128);
analoghrite(10,128);
analoghrite(11,128);

}

void loop()
{

if (Serial.available())

{
char ch = Serial.read();
if(ch >= '0' &% ch <= '9") // is ch a number?
{

prescale = ch - '0';

else if(ch == 'a') // timer o;
{
TCCROB = (TCCROB & mask) | prescale;

}
else if(ch == 'b') // timer 1;
{
TCCR1B = (TCCR1B & mask) | prescale;
}

566 | Chapter18: Using the Controller Chip Hardware

else if(ch == 'c') // timer 2;

{
TCCR2B = (TCCR2B & mask) | prescale;

Avoid changing the frequency of TimerO (used for analoghirite pins 5
and 6) because it will result in incorrect timing using delay and millis.

Discussion

If you just have LEDs connected to the analog pins in this sketch, you will not see any
noticeable change to the brightness as you change the PWM speed. You are changing
the speed as they are turning on and off, not the ratio of the on/off time. If this is unclear,
see the introduction to Chapter 7 for more on PWM.

You change the PWM frequency of a timer by setting the TCCRnB register where n is the
register number. On a Mega board you also have TCCR3B, TCCR4B, and TCCR5B for timers
3 through 5.

All analog output (PWM) pins on a timer use the same frequency, so
changing timer frequency will affect all output pins for that timer.

18.7 Counting Pulses

Problem

You want to count the number of pulses occurring on a pin. You want this count to be
done completely in hardware without any software processing time being consumed.

Solution
Use the pulse counter built into the Timer1 hardware:
/¥

* HardwareCounting sketch
*

* uses pin 5 on 168/328, pin 47 on Mega
*/

unsigned int count;

unsigned int getCount()

18.7 Counting Pulses | 567

TCCR1B= 0 ; // Gate Off / Counter Tn stopped
count = TCNTZ1;
TCNTL = 0;

bitSet(TCCR1B ,CS12); // Counter Clock source is external pin
bitSet(TCCR1B ,CS11); // Clock on rising edge
bitSet(TCCR1B ,CS10); // you can clear this bit for falling edge

return count;

void setup()
{

Serial.begin(9600);
digitalWrite(5, HIGH);
// hardware counter setup (see ATmega data sheet for details)

TCCR1A=0; // reset timer/counter control register A
getCount(); // this will start the clock
}
void loop()
{
delay(1000);
Serial.println(getCount());
}

For the Mega, change TCCR1A to TCCR5A and TCCR1B to TCCR5B, and connect input to
pin 47.

Discussion

You can test this sketch by connecting the serial receive pin (pin 0) to the input pin (pin
5 on a standard Arduino board). Each character sent should show an increase in the
count. If you have two Arduino boards, you can run one of the pulse generator sketches
from previous recipes in this chapter and connect the pulse output (pin 9) to the input.

W8

Hardware pulse counting uses a pin that is internally wired within the
- hardware and cannot be changed. Use pin 5 on a standard Arduino
s board, pin 47 on the Mega.

The line TCCR1A=0; in setup clears the register TCCR1A so that it is ready to start counting.

Calling getCount() returns the current count, resets the count, and starts counting
again.

In loop the current count is printed once per second. If no pulses are detected on
pin 5, the values will be o.

568 | Chapter18: Using the Controller Chip Hardware

See Also

The FrequencyCounter library using the method discussed in this recipe: http://inter
face.khm.delindex.php/lab/experiments/arduino-frequency-counter-library/

18.8 Measuring Pulses More Accurately

Problem

You want to measure the period between pulses or the duration of the on or off time
of a pulse. You need this as accurate as possible, so you don’t want any delay due to
calling an interrupt handler (as in Recipe 18.2), as this will affect the measurements.

Solution

Use the hardware pulse measuring capability built into the Timer1 hardware:

/*
* InputCapture
* uses timer hardware to measure pulses on pin 8

*/
const int inputCapturePin = 8; // input pin cannot be changed
const int prescale = 8; // prescale factor (each tick 0.5 us @16MHz)

const byte prescaleBits = B010; // see Table 18-1 or Datasheet
// calculate time per counter tick in ns
const long precision = (1000000/(F_CPU/1000)) * prescale ;

const int numberOfEntries = 64; // the number of pulses to measure

volatile byte index = 0;
volatile unsigned int results[numberOfEntries]; // note this is 16 bit value

/* ICR interrupt vector */
ISR(TIMER1 CAPT vect)

TCNT1 = 0; // reset the counter

if(index != 0 || bitRead(TCCR1B ,ICES1) == true) // wait for rising edge

{ // falling edge was detected
results[index] = ICR1; // save the input capture value

index = index + 1;

}
TCCR1B ~= BV(ICES1); // toggle bit to trigger on the other edge
}

void setup() {
Serial.begin(9600);
pinMode (inputCapturePin, INPUT); // ICP pin (digital pin 8 on Arduino) as input

TCCR1A = 0 ; // Normal counting mode
TCCR1B = prescaleBits ; // set prescale bits

18.8 Measuring Pulses More Accurately | 569

http://interface.khm.de/index.php/lab/experiments/arduino-frequency-counter-library/
http://interface.khm.de/index.php/lab/experiments/arduino-frequency-counter-library/

TCCR1B |= _BV(ICES1); // enable input capture

bitSet(TIMSK1,ICIE1); // enable input capture interrupt for timer 1
Serial.println(precision); // report duration of each tick in microseconds

// this loop prints the number of pulses in the last second, showing min and max
pulse widths
void loop() {
if(index >= numberOfEntries)
{
Serial.println("Durations in Microseconds are:") ;
for(byte i=0; i < numberOfEntries; i++)

long duration;
duration = results[i] * precision; // pulse duration in nanoseconds
Serial.println(duration / 1000); // duration in microseconds

while(1) // loop so the print statements are executed once only

}
}

>

Discussion

This sketch uses a timer facility called Input Capture to measure the duration of a pulse.
Only 16-bit timers support this capability and this only works with pin 8 on a standard
Arduino board.

B
)

Input Capture uses a pin that is internally wired within the hardware
and cannot be changed. Use pin 8 on a standard Arduino board and pin
s 48 on a Mega (using Timer5).

Because Input Capture is implemented entirely in the controller chip hardware, no time
is wasted in interrupt handling, so this technique is more accurate for very short pulses
(less than tens of microseconds).

If the count goes higher than the maximum value for the timer, you can monitor over-
flow to increment a variable to extend the counting range. The following code incre-
ments a variable named overflow each time the counter overflows:

volatile int overflows = 0;

/* Overflow interrupt vector */
ISR(TIMERL_OVF_vect) // here if no input pulse detected

overflows++; // increment overflow count

}

570 | Chapter18: Using the Controller Chip Hardware

Change the code in setup as follows:

TIMSK1 = _BV(ICIE1); // enable input capture interrupt for timer 1
TIMSK1 |= _BV(TOIE1); // Add this line to enable overflow interrupt

18.9 Measuring Analog Values Quickly

Problem

You want to read an analog value as quickly as possible without decreasing the
accuracy.

Solution

You can increase the analogRead sampling rate by changing register values that deter-
mine the sampling frequency:

const int sensorPin = 0; //pin the receiver is connected to
const int numberOfEntries = 100;

unsigned long microseconds;
unsigned long duration;

int results[numberOfEntries];
void setup()
Serial.begin(9600);

// standard analogRead performance (prescale = 128)
microseconds = micros();
for(int i = 0; i < numberOfEntries; i++)

{
}

duration = micros() - microseconds;
Serial.print(numberOfEntries);
Serial.print(" readings took ");
Serial.println(duration);

results[i] = analogRead(sensorPin);

// running with high speed clock (set prescale to 16)
bitClear (ADCSRA,ADPSO) ;

bitClear (ADCSRA,ADPS1) ;

bitSet(ADCSRA,ADPS2) ;

microseconds = micros();

for(int i = 0; i < numberOfEntries; i++)

{
}

duration = micros() - microseconds;
Serial.print(numberOfEntries);
Serial.print(" readings took ");
Serial.println(duration);

results[i] = analogRead(sensorPin);

18.9 Measuring Analog Values Quickly | 571

}

void loop()

}

Running the sketch on a 16 MHz Arduino will produce output similar to the following:

100 readings took 11308
100 readings took 1704

Discussion

analogRead takes around 110 microseconds to complete a reading. This may not be fast
enough for rapidly changing values, such as capturing the higher range of audio fre-
quencies. The sketch measures the time in microseconds for the standard analogRead
and then adjusts the timebase used by the analog-to-digital converter (ADC) to perform
the conversion faster. With a 16 MHz board, the timebase rate is increased from
125 KHz to 1 MHz. The actual performance improvement is slightly less than eight
times because there is some overhead in the Arduino analogRead function that is not
improved by the timebase change. The reduction of time from 113 microseconds to 17
microseconds is a significant improvement.

The ADCSRA register is used to configure the ADC, and the bits set in the sketch
(ADPS0, ADPS1, and ADPS2) set the ADC clock divisor to 16.

See Also

Atmel has an application note that provides a detailed explanation of performance
aspects of the ADC: http://www.atmel.com/dyn/resources/prod_documents/DOC2559
.PDF

18.10 Reducing Battery Drain

Problem

You want to reduce the power used by your application by shutting down Arduino
until a period of time has elapsed or until an external event takes place.

Solution

This solution uses a library by Arduino guru Peter Knight. You can download the library
from http://code.google.com/p/narcoleptic/:

#include <Narcoleptic.h>

void setup() {
pinMode(2,INPUT);
digitalWrite(2,HIGH);
pinMode(13,0UTPUT);

572 | Chapter18: Using the Controller Chip Hardware

http://www.atmel.com/dyn/resources/prod_documents/DOC2559.PDF
http://www.atmel.com/dyn/resources/prod_documents/DOC2559.PDF
http://code.google.com/p/narcoleptic/

digitalWrite(13,LOW);

void loop() {
int a;

// Merlin the cat is snoozing... Connect digital pin 2 to ground to wake him up.
Narcoleptic.delay(500); // During this time power consumption is minimized

while (digitalRead(2) == LOW) {
// Wake up CPU. Unfortunately, Merlin does not like waking up.

// Swipe claws left
digitalWrite(13,HICH);
delay(50);

// Swipe claws right
digitalWrite(13,LOW);
delay(50);

}

// Merlin the cat goes to sleep...
}

Discussion

A standard Arduino board would run down a 9-volt alkaline battery in a few weeks
(the Duemilanove typically draws more than 25 milliamperes [mA], excluding any ex-
ternal devices that may be connected). You can reduce this consumption by half if you
use a board that does not have a built-in USB interface chip, such as the Arduino Mini,
LilyPad, Fio, or one of the Modern Device Bare Bones Boards that require the use of
an external USB interface for uploading sketches. Significantly greater power savings
can be achieved if your application can suspend operation for a period of time—
Arduino hardware can be put to sleep for a preset period of time or until a pin changes
state, and this reduces the power consumption of the chip to less than one one-
hundredth of 1 percent (from around 15 mA to around 0.001 mA) during sleep.

The library used in this recipe provides easy access to the hardware sleep function. The
sleep time can range from 16 to 8,000 milliseconds (eight seconds). To sleep for longer
periods you can repeat the delay intervals until you get the period you want:

void longDelay(long milliseconds)
while(milliseconds > 0)

if(milliseconds > 8000)

{
milliseconds -= 8000;
Narcoleptic.delay(8000);

}

else

{

Narcoleptic.delay(milliseconds);

18.10 Reducing Battery Drain | 573

break;

}
}

Sleep mode can reduce the power consumption of the controller chip, but if you are
looking to run for as long as possible on a battery, you should minimize current drain
through external components such as inefficient voltage regulators, pull-up or pull-
down resistors, LEDs, and other components that draw current when the chip is in
sleep mode.

See Also

See the Arduino hardware page for links to information on the LilyPad and Fio boards:
http://www.arduino.cc/en/Main/Hardware

For an example of very low power operation, see http://interface.khm.de/index.php/lab/
experiments/sleep_watchdog_battery/.

18.11 Setting Digital Pins Quickly

Problem

You need to set or clear digital pins much faster than enabled by the Arduino digital
Write command.

Solution

Arduino digitalWrite provides a safe and easy-to-use method of setting and clearing
pins, butitis more than 30 times slower than directly accessing the controller hardware.
You can set and clear pins by directly setting bits on the hardware registers that are
controlling digital pins.

This sketch uses direct hardware I/O to send Morse code (the word arduino) to an AM
radio tuned to approximately 1 MHz. The technique used here is 30 times faster than
Arduino digitalWrite:

/*

* Morse sketch
*

* Direct port I/O used to send AM radio carrier at 1MHz

*/
const int sendPin = 2;

const byte WPM = 12; // sending speed in words per minute
const long repeatCount = 1200000 / WPM; // count used to determine

the duration of dots and dashes

const byte dot = 1;

574 | Chapter18: Using the Controller Chip Hardware

http://www.arduino.cc/en/Main/Hardware
http://interface.khm.de/index.php/lab/experiments/sleep_watchdog_battery/
http://interface.khm.de/index.php/lab/experiments/sleep_watchdog_battery/

cons
cons
cons

t byte dash = 3;
t byte gap = 3;
t byte wordGap = 7;

byte letter = 0; // the letter to send

char *arduino = ".- .-. -.. ..

void

"

setup()

pinMode(sendPin, OUTPUT);
Serial.begin(9600);

void

Loop()

sendMorse(arduino);
delay(2000);

void sendMorse(char * string)

{

letter = 0 ;
while(string[letter]!= 0)
{

}
}

void
tr

se

void

{

if(string[letter] == ".
{

sendDot();
else if(string[letter

{
sendDash();

ilse if(string[letter]
sendGap();

ilse if(string[letter]

{ sendWordGap();

letter = letter+1;

sendDot ()

ansmitCarrier(dot *
ndGap();

sendDash()

")

=)

== 0)

repeatCount);

18.11 Setting Digital Pins Quickly | 575

transmitCarrier(dash * repeatCount);
sendGap();

void sendGap()

transmitNoCarrier(gap * repeatCount);

}

void sendWordGap()
{

transmitNoCarrier(wordGap * repeatCount);

}
void transmitCarrier(long count)

while(count--)

{
bitSet(PORTD, sendPin);
bitSet(PORTD, sendPin);
bitSet(PORTD, sendPin);
bitSet(PORTD, sendPin);
bitClear (PORTD, sendPin);

void transmitNoCarrier(long count)
while(count--)

bitClear (PORTD, sendPin);
bitClear (PORTD, sendPin);
bitClear(PORTD, sendPin);
bitClear (PORTD, sendPin);
bitClear(PORTD, sendPin);
}
}

Connect one end of a piece of wire to pin 2 and place the other end near the antenna
of a medium wave AM radio tuned to 1 MHz (1,000 KHz).

Discussion

The sketch generates a 1 MHz signal to produce dot and dash sounds that can be
received by an AM radio tuned to this frequency. The frequency is determined by the
duration of the bitSet and bitClear commands that set the pin HIGH and LOW to generate
the radio signal. bitSet and bitClear are not functions, they are macros. Macros sub-
stitute an expression for executable code—in this case, code that changes a single bit
in register PORTD given by the value of sendPin.

Digital pins O through 7 are controlled by the register named PORTD. Each bit in PORTD
corresponds to a digital pin. Pins 8 through 13 are on register PORTB, and pins 14 through

576 | Chapter18: Using the Controller Chip Hardware

19 are on PORTA. The sketch uses the bitSet and bitClear commands to set and clear
bits on the port (see Recipe 3.12). Each register supports up to eight bits (although not
all bits correspond to Arduino pins). If you want to use Arduino pin 13 instead of pin
2, you need to set and clear PORTB as follows:

const int sendPin = 13;

bitSet(PORTB, sendPin - 8);
bitClear(PORTB, sendPin - 8);

You subtract 8 from the value of the pin because bit 0 of the PORTB register is pin 8, bit
1is pin 9, and so on, to bit 5 controlling pin 13.

Setting and clearing bits using bitSet is done in a single instruction of the Arduino
controller. On a 16 MHz Arduino, that is 62.5 nanoseconds. This is around 30 times
faster than using digitalWrite.

The transmit functions in the sketch actually need more time updating and checking
the count variable than it takes to set and clear the register bits, which is why the
transmitCarrier function has four bitSet commands and only one bitClear
command—the additional bitClear commands are not needed because of the time it
takes to update and check the count variable.

18.11 Setting Digital Pins Quickly | 577

APPENDIXA
Electronic Components

If you are just starting out with electronic components, you may want to purchase a
beginner’s starter kit that contains the basic components needed for many of the recipes
in this book. These usually include the most common resistors, capacitors, transistors,
diodes, LEDs, and switches.

Here are some popular choices:

Maker Shed Arduino starter kit
http://www.makershed.com/ProductDetails.asp?Product Code=MSGSA

Starter Kit for Arduino-Flex (SKU: DEV-09952)
http://www.sparkfun.com/commerce/product_info.php?products_id=9952

Adafruit Starter Pack for Arduino-1.0 (product ID #68)
http://www.adafruit.com/index.php?main_page=product_info&products_id=68

Oomlout Starter Kit for Arduino (ARDX)
http://oomlout.co.uk/arduino-experimentation-kit-ardx-p-183.html

Seeeduino Catalyst Pack
http://www.seeedstudio.com/depot/super-seeeduino-catalyst-pack-p-257.html

You can also purchase the individual components for your project, as shown in Fig-
ure A-1. The following sections provide an overview of common electronic
components—part numbers can be found on this book’s website.

Capacitor

Capacitors store an electrical charge for a short time and are used in digital circuits to
filter (smooth out) dips and spikes in electrical signals. The most commonly used ca-
pacitor is the nonpolarized ceramic capacitor; for example, a 100nF disc capacitor used
for decoupling (reducing noise spikes). Electrolytic capacitors can generally store more
charge than ceramic caps and are used for higher current circuits, such as power
supplies and motor circuits. Electrolytic capacitors are usually polarized, and the neg-

579

http://www.makershed.com/ProductDetails.asp?ProductCode=MSGSA
http://www.sparkfun.com/commerce/product_info.php?products_id=9952
http://www.adafruit.com/index.php?main_page=product_info&products_id=68
http://oomlout.co.uk/arduino-experimentation-kit-ardx-p-183.html
http://www.seeedstudio.com/depot/super-seeeduino-catalyst-pack-p-257.html
http://oreilly.com/catalog/9780596802486/

W

B s ,,_x\‘x‘"
road B

Capacitor - Unpolarized Capacitor - Polarized Diode
+
+
l K +l @ # ’ +
LED Optocoupler Photoresistor
a %+ % 1., 4 14+ b4 %, %
o _-\\ | #‘x K i
flat | 12] n3
k ak L_f_______s__.:
+
Pot (Potentiometer) Relay Resistor
-
: - e
H = 3 “.
Stepper Motor Switch Transistor

Figure A-1. Schematic representation of common components

ative leg (marked with a minus sign) must be connected to ground (or to a point with
lower voltage than the positive leg). Chapter 8 contains examples showing how capac-

itors are used in motor circuits.

Diode

Diodes permit current to flow in one direction and block it in the other direction. Most

diodes have a band (see Figure A-1) to indicate the cathode (negative) end.

Diodes such as the 1N4148 can be used for low-current applications such as the levels
used on Arduino digital pins. The 1N4001 diode is a good choice for higher currents

(up to 1 amp).

580 | AppendixA: Electronic Components

Integrated Circuit

Integrated circuits contain electronic components packaged together in a convenient
chip. These can be complex, like the Arduino controller chip that contains thousands
of transistors, or as simple as the optical isolator component used in Chapter 10 that
contains just two semiconductors. Some integrated circuits (such as the Arduino chip)
are sensitive to static electricity and should be handled with care.

Keypad

Akeypad is a matrix of switches used to provide input for numeric digits. See Chapter 5.

LED

An LED (light-emitting diode) is a diode that emits light when current flows through
the device. As they are diodes, LEDs only conduct electricity in one direction. See
Chapter 7.

Motor (DC)

Motors convert electrical energy into physical movement. Most small direct current
(DC) motors have a speed proportional to the voltage, and you can reverse the direction
they move by reversing the polarity of the voltage across the motor. Most motors need
more current than the Arduino pins provide, and a component such as a transistor is
required to drive the motor. See Chapter 8.

Optocoupler

Optocouplers (also called optoisolators) provide electrical separation between devices.
This isolation allows devices that operate with different voltage levels to work safely
together. See Chapter 10.

Photocell (Photoresistor)

Photocells are variable resistors whose resistance changes with light. See Chapter 6.

Piezo

A small ceramic transducer that produces sound when pulsed, a Piezo is polarized and
may have a red wire indicating the positive end and a black wire indicating the side to
be connected to ground. See Chapter 9.

Piezo | 581

Pot (Potentiometer)

A potentiometer (pot for short) is a variable resistor. The two outside terminals act as
a fixed resistor. A movable contact called a wiper (or slider) moves across the resistor,
producing a variable resistance between the center terminal and the two sides. See
Chapter 5.

Relay

A relay is an electronic switch—circuits are opened or closed in response to a voltage
on the relay coil, which is electrically isolated from the switch. Most relay coils require
more current than Arduino pins provide, so they need a transistor to drive them. See
Chapter 8.

Resistor

Resistors resist the flow of electrical current. A voltage flowing through a resistor will
limit the current proportional to the value of the resistor (see Ohm’s law). The bands
on a resistor indicate the resistor’s value. Chapter 7 contains information on selecting
a resistor for use with LEDs.

Solenoid

A solenoid produces linear movement when powered. Solenoids have a metallic core
that is moved by a magnetic field created when passing current through a coil. See
Chapter 8.

Speaker

A speaker produces sound by moving a diaphragm (the speaker cone) to create sound
waves. The diaphragm is driven by sending an audio frequency electrical signal to a
coil of wire attached to the diaphragm. See Chapter 9.

Stepper Motor

A stepper motor rotates a specific number of degrees in response to control pulses. See
Chapter 8.

582 | AppendixA: Electronic Components

Switch

A switch makes and breaks an electrical circuit. Many of the recipes in this book use a
type of pushbutton switch known as a tactile switch. Tactile switches have two pairs of
contacts that are connected together when the button is pushed. The pairs are wired
together, so you can use either one of the pair. Switches that make contact when pressed
are called Normally Open (NO) switches. See Chapter 5.

Transistor

Transistors are used to switch on high currents or high voltages in digital circuits. In
analog circuits, transistors are used to amplify signals. A small current through the
transistor base results in a larger current flowing through the collector and emitter.

For currents up to .5 amperes (500 mA) or so, the 2N2222 transistor is a widely available
choice. For currents up to 5 amperes, you can use the TIP120 transistor.

See Chapters 7 and 8 for examples of transistors used with LEDs and motors.

See Also

For more comprehensive coverage of basic electronics, see the following:
* Make: Electronics by Charles Platt (O’Reilly)
* Getting Started in Electronics by Forrest Mims (Master Publishing)
* Physical Computing by Tom Igoe (Cengage)
* Practical Electronics for Inventors by Paul Scherz (McGraw-Hill)

SeeAlso | 583

http://oreilly.com/catalog/9780596153755/

APPENDIX B
Using Schematic Diagrams and
Data Sheets

A schematic diagram, also called a circuit diagram, is the standard way of describing
the components and connections in an electronic circuit. It uses iconic symbols to
represent components, with lines representing the connections between the
components.

A circuit diagram represents the connections of a circuit, but it is not a drawing of the
actual physical layout. Although you may initially find that drawings and photos of the
physical wiring can be easier to understand than a schematic, in a complicated circuit
it can be difficult to clearly see where each wire gets connected.

Circuit diagrams are like maps. They have conventions that help you to orient yourself
once you become familiar with their style and symbols. For example, inputs are usually
to the left, outputs to the right; OV or ground connections are usually shown at the
bottom of simple circuits, the power at the top.

Figure A-1 in Appendix A shows some of the most common components, and the
symbols used for them in circuit diagrams. Figure B-1 is a schematic diagram from
Recipe 8.6 that illustrates the symbols used in a typical diagram.

Components such as the resistor and capacitor used here are not polarized—they can
be connected either way around. Transistors, diodes, and integrated circuits are po-
larized, so it is important that you identify each lead and connect it according to the
diagram.

Figure B-2 shows how the wiring could look when connected using a breadboard. This
drawing was produced using a tool called Fritzing that enables the drawing of electronic
circuits. See http://fritzing.org/.

585

http://fritzing.org/

RESETY
ElH ol

5V
Gnd
Gnd
Vin

A Diode
TN4001 +V
g[]
R 5 1K Motor
D ; Resistor Power
2 Source
X1
U RX0
W22 Gnd
| or
TIP102

TIP102

Fle Edit Part View Window Help

w

Ab PUD AS W
¥3nod

€
£
=
[
=
=
3
o
n
n

ShE2TDO

=
H
=
5
=

Figure B-2. Physical layout of the circuit shown in Figure B-1

586 | AppendixB: Using Schematic Diagrams and Data Sheets

How to Read a Data Sheet

Data sheets are produced by the manufacturers of components to summarize the tech-
nical characteristics of a device. Data sheets contain definitive information about the
performance and usage of the device; for example, the minimum voltage needed for
the device to function and the maximum voltage that it can reliably tolerate. Data sheets
contain information on the function of each pin and advice on how to use the device.

For more complicated devices, such as LCDs, the data sheet covers how to initialize
and interact with the device. Very complex devices, such as the Arduino controller chip,
require hundreds of pages to explain all the capabilities of the device.

Data sheets are written for design engineers, and they usually contain much more in-
formation than you need to get most devices working in an Arduino project. Don’t be
intimidated by the volume of technical information; you will typically find the impor-
tant information in the first couple of pages. There will usually be a circuit diagram
symbol labeled to show how the connections on the device correspond to the symbols.
This page will typically have a general description of the device (or family of devices)
and the kinds of uses they are suitable for.

After this, there is usually a table of the electrical characteristics of the device.

Look for information about the maximum voltage and the current the device is designed
to handle to check that it is in the range you need. For components to connect directly
to astandard Arduino board, devices need to operate at +5 volts. To be powered directly
from the pin of the Arduino, they need to be able to operate with a current of 40 mA
or less.

Some components are designed to operate on 3.3 volts and can be dam-
aged if connected to a 5V Arduino board. Use these devices with a board
~ 9lae designed to run from a 3.3V supply (e.g., the LilyPad, Fio, or 3.3V Mini
" Pro), or use a logic level converter such as the SparkFun BOB-08745.
More information on logic level conversion is available at http://ics.nxp
.com/support/documents/interface/pdf/an97055.pdf.

Choosing and Using Transistors for Switching

The Arduino output pins are designed to handle currents up to 40 mA (milliamperes),
which is only 1/25 of an amp. You can use a transistor to switch larger currents. This
section provides guidance on transistor selection and use.

The most commonly used transistors with Arduino projects are bipolar transistors.
These can be of two types (named NPN and PNP) that determine the direction of
current flow. NPN is more common for Arduino projects and is the type that is illus-
trated in the recipes in this book. For currents up to .5 amperes (500 mA) or so, the

Choosing and Using Transistors for Switching | 587

http://ics.nxp.com/support/documents/interface/pdf/an97055.pdf
http://ics.nxp.com/support/documents/interface/pdf/an97055.pdf

2N2222 transistor is a widely available choice; the TIP120 transistor is a popular choice
for currents up to 5 amperes.

Figure B-1 shows an example of a transistor connected to an Arduino pin used to drive
a motor.

Transistor data sheets are usually packed with information for the design engineer, and
most of this is not relevant for choosing transistors for Arduino applications. Ta-
ble B-1 shows the most important parameters you should look for (the values shown
are for a typical general-purpose transistor). Manufacturing tolerances result in varying
performance from different batches of the same part, so data sheets usually indicate
the minimum, typical, and maximum values for parameters that can vary from part to
part.

Here’s what to look for:

Collector-emitter voltage
Make sure the transistor is rated to operate at a voltage higher than the voltage of
the power supply for the circuit the transistor is controlling. There is no problem
in choosing a transistor with a higher rating.

Collector current
This is the absolute maximum current the transistor is designed to handle. It is a
good practice to choose a transistor that is rated at least 25 percent higher than
what you need.

DC current gain
This determines the amount of current needed to flow through the base of the
transistor to switch the output current. Dividing the output current (the maximum
current that will flow through the load the transistor is switching) by the gain gives
the amount of current that needs to flow through the base.

Collector-emitter saturation voltage
This is the voltage level on the collector when the transistor is fully conducting.
Although this is usually less than 1 volt, it can be significant when calculating a
series resistor for LEDs or for driving high-current devices.

588 | AppendixB: Using Schematic Diagrams and Data Sheets

Table B-1. Example of key transistor data sheet specifications

Absolute maximum ratings
Parameter

Collector-emitter voltage

Collector current

Electrical characteristics

DC current gain

Collector-emitter
saturation voltage

Symbol

Vceo

Ic

Vce

(sat)

Rating
40

600

90@10mA

50 @ 500
mA

0.3@100
mA

1.0@500
mA

Units
Volts

mAorA

Volts
Volts

Comment

The maximum voltage between the collector and
emitter

The maximum current that the transistor is designed
to handle

Gain with 10 mA current flowing

Gain with 500 mA current flowing

Voltage drop across collector and emitter at various
currents

Choosing and Using Transistors for Switching | 589

APPENDIX C
Building and Connecting the Circuit

Using a Breadboard

A breadboard enables you to prototype circuits quickly, without having to solder the
connections. Figure C-1 shows an example of a breadboard.

..

Figure C-1. Breadboard for prototyping circuits

Breadboards come in various sizes and configurations. The simplest kind is just a grid
of holes in a plastic block. Inside are strips of metal that provide electrical connection
between holes in the shorter rows. Pushing the legs of two different components into
the same row joins them together electrically. A deep channel running down the middle
indicates that there is a break in connections there, meaning you can push a chip in
with the legs at either side of the channel without connecting them together.

Some breadboards have two strips of holes running along the long edges of the board
that are separated from the main grid. These have strips running down the length of
the board inside, and provide a way to connect a common voltage. They are usually in
pairs for +5 volts and ground. These strips are referred to as rails and they enable you
to connect power to many components or points in the board.

591

While breadboards are great for prototyping, they have some limitations. Because the
connections are push-fit and temporary, they are not as reliable as soldered
connections. If you are having intermittent problems with a circuit, it could be due to
a poor connection on a breadboard.

Connecting and Using External Power Supplies and Batteries

The Arduino can be powered from an external power source rather than through the
USB lead. You may need more current than the USB connection can provide (the
maximum USB current is 500 mA; some USB hubs only supply 100 mA), or you may
want to run the board without connection to the computer after the sketch is uploaded.

The standard Arduino board has a socket for connecting external power. This can be
an AC-powered power supply or a battery pack.

'
% These details relate to the Uno, Duemilanove, and Mega boards. Other
"‘:‘ Arduino and compatible boards may not protect the board from reverse

T W connections, or they may automatically switch to use external power
" and may not accept higher voltages. If you are using a different board,
check before you connect power or you may damage the board.

If you are using an AC power supply, you need one that produces a DC voltage between
7 and 12 volts. Choose a power supply that provides at least as much current as you
need (there is no problem in using a power supply with a higher current than you need).
Wall wart—style power supplies come in two broad types: regulated and unregulated.
A regulated power supply has a circuit that maintains the specified voltage, and this is
a good choice to use with Arduino. An unregulated power supply will produce a higher
voltage when run at a lower current and can sometimes produce twice the rated voltage
when driving low-current devices such as Arduino. Voltages higher than 12 volts can
overheat the regulator on the Arduino, and this can cause intermittent operation or
even damage the board.

Battery voltage should also be in the range of 7 to 12 volts. Battery current is rated in
mAh (the amount of milliamperes the battery can supply in one hour). A battery with
a rating of 500 mAh (a typical alkaline 9V battery) should last around 20 hours with
an Arduino board drawing 25 mAh. If your project draws 50 mA, the battery life will
be halved, to around 10 hours. How much current your board uses depends mostly on
the devices (such as LEDs and other external components) that you use. Bear in mind
that the Uno and Duemilanove boards are designed to be easy to use and robust, but
they are not optimized for low power use with a battery. See Recipe 18.10 for advice
on reducing battery drain.

592 | Appendix C: Building and Connecting the Circuit

The positive (+) connection from the power supply should be connected to the center
pin of the Arduino power plug. If you connect it the wrong way around on an Uno,
Duemilanove, or Mega, the board will not break, but it will not work until the con-
nection is reversed. These boards automatically detect that an external power supply
is connected and use that to power the board. You can still have the USB lead plugged
in, so serial communication and code uploading will still work.

Using Capacitors for Decoupling

Digital circuits switch signals on and off quickly, and this can cause fluctuations in the
power supply voltage that can disrupt proper operation of the circuit. Properly designed
digital circuits use decoupling capacitors to filter these fluctuations. Decoupling ca-
pacitors should be connected across the power pins of each IC in your circuit with the
capacitor leads kept as short as possible. A ceramic capacitor of 0.1 uF is a good choice
for decoupling—that value is not critical (20 percent tolerance is OK).

Using Snubber Diodes with Inductive Loads

Inductive loads are devices that have a coil of wire inside. This includes motors, sole-
noids, and relays. The interruption of current flow in a coil of wire generates a spike of
electricity. This voltage can be higher than +5 volts and can damage sensitive electronic
circuits such as Arduino pins. Snubber diodes are used to prevent that by conducting
the voltage spikes to ground. Figure A-1 in Appendix A shows an example of a snubber
diode used to suppress voltage spikes when driving a motor.

Working with AC Line Voltages

When working with an AC line voltage from a wall socket, the first thing you should
consider is whether you can avoid working with it. Electricity at this voltage is
dangerous enough to kill you, not just your circuit, if it is used incorrectly. It is also
dangerous for people using whatever you have made if the AC line voltage is not isolated
properly.

Hacking controllers for devices that are manufactured to work with mains voltage, or
using devices designed to be used with microcontrollers to control AC line voltages, is
safer (and often easier) than working with mains voltage itself. See Chapter 10 for
recipes on controlling external devices for examples of how to do this.

Working with AC Line Voltages | 593

APPENDIX D
Tips on Troubleshooting
Software Problems

As you write and modify code, you will get code that doesn’t work (usually referred to
as a bug). There are two broad areas of software problems: code that won’t compile
and code that compiles and uploads to the board but doesn’t behave as you want.

Code That Won't Compile

Your code might fail to compile when you click on the “verify” triangle or the “upload”
button (see Chapter 1). This is indicated by red error messages in the black console
area at the bottom of the Arduino software window and a yellow highlight in the code
if there is a specific point where the compilation failed. Often the problem in the code
is in the line immediately before the highlighted line. The error messages in the console
window are generated by the command-line programs used to compile and link the
code (see Recipe 17.1 for details on the build process). This message may be difficult
to understand when you first start.

One of the most common errors made by people new to Arduino programming is
omission of the semicolon at the end of a line. This can produce various different error
messages, depending on the next line. For example, this code fragment:

void loop()
{

digitalWrite(ledPin, HIGH) // <- ERROR: missing semicolon
delay(1000);

produces the following error message:

In function 'void loop()':
error: expected *;' before 'delay

A less obvious error message is:

expected unqualified-id before numeric constant

595

Although the cause is similar, a missing semicolon after a constant results in a different
error message, as in this fragment:

const int ledPin = 13 // <- ERROR: missing semicolon after constant

The combination of the error message and the line highlighting provides a good starting
point for closer examination of the area where the error has occurred.

Another common error is misspelled words, resulting in the words not being recog-
nized. This includes incorrect capitalization—LedPin is different from ledPin. This
fragment:

const int ledPin = 13
digitalWrite(LedPin, HIGH); // <- ERROR: the capitalization is different

results in the following error message:

In function 'void loop()':
error: 'LedPin' was not declared in this scope

The fix is to use exactly the same spelling and capitalization as the variable declaration.

You must use the correct number and type of parameters for function calls (see Rec-
ipe 2.10). The following fragment:

digitalWrite(ledPin); // <- ERROR: this is missing the second parameter

generates this error message:

error: too few arguments to function 'void digitalWrite(uint8 t, uint8 t)'
error: at this point in file

The cursor in the IDE will point to the line in the sketch that contains the error.

Functions in sketches that are missing the return type will generate an error.
This fragment:

loop() // <- ERROR: loop is missing the return type

}

produces this error:

error: ISO C++ forbids declaration of 'loop' with no type

The error is fixed by adding the missing return type:

void loop() // <- return type precedes function name

}

Incorrectly formed comments, such as this fragment that is missing the second “/”:
digitalWrite(ledPin, HICH); / set the LED on (ERROR: missing //)

result in this error:

error: expected primary-expression before '/' token

596 | AppendixD: Tips on Troubleshooting Software Problems

It is good to work on a small area of code, and regularly verify/compile to check the
code. You don’t need to upload to check that the sketch compiles. The earlier you
become aware of a problem, the easier it is to fix it, and the less impact it will have on
other code. It is much easier to fix code that has one problem than it is to fix a large
section of code that has multiple errors in it.

Code That Compiles but Does Not Work As Expected

There is always a feeling of accomplishment when you get your sketch to compile
without errors, but correct syntax does not mean the code will do what you expect.

This is usually a subtler problem to isolate. You are now in a world where software and
hardware are interacting. It is important to try to separate problems in hardware from
those in software. Carefully check the hardware (see Appendix E) to make sure it is
working correctly.

If you are sure the hardware is wired and working correctly, the first step in debugging
your sketch is to carefully read through your code to review the logic you used. Pausing
to think carefully about what you have written is usually a faster and more productive
way to fix problems than diving in and adding debugging code. It can be difficult to
see faulty reasoning in code you have just written. Walking away from the computer
not only helps prevent repetitive strain injury, but it also refreshes your troubleshooting
abilities. On your return, you will be looking at the code afresh, and it is very common
for the cause of the error to jump out at you where you could not see it before.

If this does not work, move on to the next technique: use the Serial Monitor to watch
how the values in your sketch are changed when the program runs and whether con-
ditional sections of code run. Chapter 4 explains how to use Arduino serial print state-
ments to display values on your computer.

To troubleshoot, you need to find out what is actually happening when the code runs.
Serial.print() lines in your sketch can display what part of the code is running and
the values of your variables. These statements are temporary and will be removed once
you have fixed your problem. The following sketch reads an analog value and is based
on the solution from Recipe 5.6. The sketch should change the blink rate based on the
setting of a variable resistor (see the Discussion for Recipe 5.6 for more details on how
this works). If the sketch does not function as expected, you can see if the software is
working correctly by using a serial.print() statement to display the value read from
the analog pin:
const int potPin

const int ledPin
int val = 0;

0;
13;

void setup()

Code That Compiles but Does Not Work As Expected | 597

Serial.begin(9600); // <- add this to initialize Serial
pinMode(ledPin, OUTPUT);

void loop() {
val = analogRead(potPin); // read the voltage on the pot
Serial.println(val); // <- add this to display the reading
digitalWrite(ledPin, HICH);
delay(val);
digitalWrite(ledPin, LOW);
delay(val);

}

If the value displayed on the Serial Monitor does not vary from 0 to 1023 when the pot
(variable resistor) is changed, you probably have a hardware problem—the pot may be
faulty or not wired correctly. If the value does change but the LED does not blink, the
LED may not be wired correctly.

Troubleshooting Interrelated Hardware/Software Problems

Some problems are not due strictly to software or hardware errors, but to the interplay
between them.

The most common of these is connecting the circuit to one pin and in software reading
or writing a different pin. Hardware and software are both correct in isolation—but
together they don’t work. You can change either the hardware or the software to fix
this: change the pin in software or move the connection to the pin number declared in
your sketch.

598 | AppendixD: Tips on Troubleshooting Software Problems

APPENDIX E
Tips on Troubleshooting
Hardware Problems

Hardware problems can have more immediate serious ramifications than software
problems because incorrect wiring can damage components. The most important tip
is always disconnect power when making or changing connections, and double-check your
work before connecting power.

Unplug Arduino from power while building and modifying circuits.

Applying power is the last thing you do to test a circuit, not the first.

For a complicated circuit, build it a bit at a time. Often a complicated circuit consists
of a number of separate circuit elements, each connected to a pin on the Arduino. If
this is the case, build one bit and test it, then the other bits, one at a time. If you can,
test each element using a known working sketch such as one of the example sketches
supplied with Arduino or on the Arduino Playground. It usually takes much less time
getting a complex project working if you test each element separately.

For some of the techniques in this appendix, you will need a multimeter (any inexpen-
sive digital meter that can read volts, current, and resistance should be suitable).

The most effective test is to carefully inspect the wiring and check that it matches the
circuit you are trying to build. Take particular care that power connections are the
correct way around and there are no short circuits, +5 volts accidentally connected to
0 volts, or legs of components touching where they should not. If you are unsure how
much current a device connected to an Arduino pin will draw, test it with a multimeter
before connecting it to a pin. If the circuit draws more than 40 mA, the pin on the
Arduino can get damaged.

599

You can find a video tutorial and PDF explaining how to use a multimeter at http://blog
.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html.

You may be able to test output circuits (LEDs or motors) by connecting to the positive
power supply instead of the Arduino pin. If the device does not function, it may be
faulty or not wired correctly.

If the device tests OK, but when you connect to the pin and run the code you don’t get
the expected behavior, the pin might be damaged or the problem is in software.

To test a digital output pin, hook up an LED with a resistor (see Chapter 7) or connect
a multimeter to read the voltage and run the Blink sketch on that pin. If the LED does
not flash, or doesn’t jump between 0 volts and 5 volts on the multimeter, the output
pin is probably damaged.

Take care that your wiring does not accidentally connect the power line to ground. If
this happens on a board that is powered from USB, all the lights will go out and the
board will become unresponsive. The board has a component, called a polyfuse, which
protects the computer from excessive current being drawn from the USB port. If you
draw too much current, it will “trip” and switch off power to the board. You can reset
it by unplugging the board from the USB hub (you may also need to restart your com-
puter). Before reconnecting the power, check your circuits to find and fix the faulty
wiring; otherwise, the polyfuse will trip again when you plug it back in.

Still Stuck?

After trying everything you can think of, you still may not be able to get your project
to work. If you know someone who is using Arduino or similar boards, you could ask
him for help. But if you don’t, use the Internet—particularly the Arduino forum site at
http://www.arduino.cc/. This is a place where people of all experience levels can ask
questions and share knowledge. Use the forum search box (it’s in the top-right corner)
to try to find information relating to your project. A related site is the Arduino Play-
ground, a wiki for user-contributed information about Arduino.

If a search doesn’t yield the information you need, you can post a question to the
Arduino forum. The forum is very active, and if you ask your question clearly, you are
likely to get a quick answer.

To ask your question well, identify which forum section the question should go in and
choose a title for your thread that reflects the specific problem you want to solve. Post
in only one place—most people who are likely to answer will check all the sections that
have new posts, and multiple posts will irritate people and make it less likely that you
will get help.

600 | AppendixE: Tips on Troubleshooting Hardware Problems

http://blog.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html
http://blog.makezine.com/archive/2007/01/multimeter_tutorial_make_1.html
http://www.arduino.cc/

Explain your problem, and the steps you have taken to try to fix it. It’s better to describe
what happens than to explain why you think it is happening. Include all relevant code,
but try to produce a concise test sketch that does not contain code that you know is
not related to the problem. If your problem relates to a device or component that is
external to the Arduino board, post a link to the data sheet. If the wiring is complex,
post a diagram or photo showing how you have connected things up.

still Stuck? | 601

APPENDIXF

Digital and Analog Pins

Tables F-1 and F-2 show the digital and analog pins for a standard Arduino board and

the Mega board.

The “Port” column lists the physical port used for the pin—see Recipe 18.11 for in-
formation on how to set a pin by writing directly to a port. The introduction to Chap-
ter 18 contains more details on timer usage.

Table F-1. Analog and digital pin assignments common to popular Arduino boards

Arduino 168/328 Arduino Mega (pins 0-19)
Digital pin ~ Port Analogpin Usage Port Analogpin Usage
0 PDO USART RX PEO USARTORX, Pin Int 8
1 PD1 USART TX PE1 USARTO TX
2 PD2 Ext Int 0 PE4 PWMT3B, INT4
3 PD3 PWMT2B, Extint1 PE5 PWMT3(, INT5
4 PD 4 PG5 PWMT0B
5 PD5 PWMTOB PE3 PWMT3A
6 PD6 PWM T0A PH3 PWM T4A
7 PD7 PH4 PWM T4B
8 PBO Input capture PH5 PWM T4C
9 PB1 PWMTIA PH6 PWMT2B
10 PB2 PWMT1B, S PB4 PWMT2A, Pin Int 4
11 PB3 PWM T2A, MOSI PB5 PWMT1A, PinInt 5
12 PB4 SPIMISO PB6 PWMT1B, PinInt 6
13 PB5 SPISCK PB7 PWMTOA, Pin Int 7
14 PCO 0 PJ1 USART3 TX, Pin Int 10
15 PCT 1 PJO USART3 RX, Pin Int 9

603

Arduino 168/328

Arduino Mega (pins 0-19)

Digital pin Port Analogpin Usage Port Analogpin Usage

16 PC2 2 PH1 USART2 TX

17 PC3 3 PHO USART2 RX

18 PC4 4 12CSDA PD3 USARTTTX, Ext Int 3
19 PC5 5 12¢SCL PD2 USARTTRX, Ext Int 2

Table F-2. Assignments for additional Mega pins

Arduino Mega (pins 20-44)

Arduino Mega (pins 45-69)

Digital pin Port Usage Digital pin Port Analogpin Usage
20 PDT 12CSDA, ExtInt1 45 PL4 PWM 5B
21 PDO 12CSCL, ExtInt0 46 PL3 PWM 5A
22 PAO ExtMemoryaddrbit0 47 PL2 T5 external counter
23 PAT Ext Memory bit 1 48 PL1 ICPT5

24 PA2 Ext Memory bit 2 49 PLO ICPT4

25 PA3 Ext Memory bit 3 50 PB3 SPIMISO
26 PA4 ExtMemory bit4 51 PB2 SPIMOSI
27 PA5 Ext Memory bit 5 52 PB1 SPI SCK
28 PA6 Ext Memory bit6 53 PBO SPISS

29 PA7 ExtMemory bit 7 54 PFO 0

30 PC7 ExtMemory bit 15 55 PF1 1

31 PC6 Ext Memory bit 14 56 PF2 2

32 PC5 Ext Memory bit 13 57 PF3 3

33 PC4 Ext Memory bit 12 58 PF4 4

34 PC3 Ext Memory bit 11 59 PE5 5

35 PC2 Ext Memory bit 10 60 PF6 6

36 PC1 Ext Memory bit9 61 PF7 7

37 PCO Ext Memory bit 8 62 PKO 8 PinInt 16
38 PD7 63 PK1 9 Pinint 17
39 PG2 ALEExtMem 64 PK2 10 PinInt 18
40 PG1 RDExtMem 65 PK3 11 PinInt 19
4 PGO WrExt Mem 66 PK4 12 Pin Int 20
4 PL7 67 PK5 13 PinInt 21
] PL6 68 PK6 14 PinInt22
44 PL5 PWM5C 69 PK7 15 PinInt 23

604 | AppendixF: Digital and Analog Pins

Table F-3 is a summary of timer modes showing the pins used with popular Arduino

chips.

Table F-3. Timer modes

Timer Arduino 168/328 Mega

Timer 0 mode (8-bit) Fast PWM Fast PWM

TimerOA analogWritepin ~ Pin6 Pin 13

TimerOB analogWritepin Pin5 Pin 4

Timer 1(16-bit) Phase correct PWM Phase correct PWM
TimerlAanalogWritepin Pin9 Pin 11

Timer1B analoghritepin Pin 10 Pin 12

Timer 2 (8-bit) Phase correct PWM Phase correct PWM
Timer2A analogWritepin Pin11 Pin 10

Timer2B analogWritepin Pin3 Pin9

Timer 3 (16-hit) N/A Phase correct PWM
Timer3A analoglhirite pin Pin5

Timer3B analoghrite pin Pin 2
Timer3Canaloghrite pin Pin3

Timer 4 (16-hit) N/A Phase correct PWM
Timer4A analoghirite pin Pin6

Timer4A analoghirite pin Pin7

Timer4A analogWrite pin Pin8

Timer 5 (16-bit) N/A

Timer5A analoglhirite pin Pin 46

Timer5A analoghirite pin Pin 45

Timer5A analogWrite pin Pin5

Note that the Arduino column is for the ATmega 168/323, and the Mega column is for
the ATmega 1280/2560.

Digital and Analog Pins | 605

APPENDIX G

ASCIl and Extended Character Sets

ASCII stands for American Standard Code for Information Interchange. It is the most
common way of representing letters and numbers on a computer. Each character is
represented by a number—for example, the letter A has the numeric value 65, and the
letter a has the numeric value 97 (lowercase letters have a value that is 32 greater than
their uppercase versions).

Values below 32 are called control codes—they were defined as nonprinting characters
to control early computer terminal devices. The most common control codes for
Arduino applications are listed in Table G-1.

Table G-1. Common ASCII control codes

Decimal Hex Escapecode Description

0 0x0 "\o' Null character (used to terminate a C string)
9 0x9 "\t' Tab

10 0xA "\n' New line

13 0xD "\r' (arriage return

27 0x1B Escape

Table G-2 shows the decimal and hexadecimal values of the printable ASCII characters.

Table G-2. ASCII table

Dec Hex Dec Hex Dec Hex
Space 32 20 @ 64 40 96 60
! 3 2 A 65 41 a 97 6l
! 34 2 B 66 42 b 98 62
3523 c 67 & « 9 63
$ 36 24 D 68 44 d 100 64
% 37 25 E 69 45 e 101 65

607

Dec Hex Dec Hex Dec Hex

& 38 26 Fo70 46 foo102 66
' 39 77 G 7 47 g 103 67
(40 28 H 72 48 h 104 68
) M 29 | 73 49 i 105 69
* 42 2) 74 4A 106 6A
+ 43 2B K 75 4B k 107 6B
, 4 20 L 76 4 I 108 6C
- 45 2D M 77 4D m 109 6D

46 2E N 78 4 n 110 6F
/ 47 2F 0 79 4 o 11 6F
0 48 30 P80 50 p M2 70
1 49 31 Q 81 51 q 113 71
2 50 32 R 8 52 ro N4 72
3 51 33 S 8 53 s 15 73
4 52 34 T 84 54 t 116 74
5 53 35 U 8 55 u M7 75
6 54 36 V 8 56 v 118 76
7 55 37 W 8 57 w 119 77
8 56 38 X 8 58 x 120 78
9 57 39 Y 8 59 y 121 79

58 3A I 9 5A z 122 7A

; 59 3B [9 5B { 123 7B
< 60 3C \ 92 5 | 124 7C
}

= 61 3D] 93 5D 125 7D
> 62 3E A 94 5E ~ 126 IE
! 63 3F 95 5F

Characters above 128 are non-English characters or special symbols and are displayed
in the Serial Monitor using the UTF-8 standard (http://en.wikipedia.org/wiki/UTF-8).
Table G-3 lists the UTF-8 extended character set.

608 | Appendix G: ASCIl and Extended Character Sets

http://en.wikipedia.org/wiki/UTF-8

Table G-3. UTF-8 extended characters

Dec Hex Dec Hex Dec Hex
Space 160 A0 A 192 (0 & 224 K0
i 161 A1 A 193 a4 225 A
¢ 62 A2 A 194 Q a4 2 R
163 A3 A 195 3 & 271 B
o 164 M A 19 4 a4 28 K4
¥ 165 A5 A 197 GG & 229 B
! 166 A6 & 198 6 e 230 E6
§ 67 A7 C 19 7 ¢ 231
168 A8 E 200 (8 & 232 B8
© 169 A9 E 200 (9 é 233 B9
: 170 AAE 20 A & 234 A
« 71 A E 203 B & 235 B
- 172 AC 1 204 CC 1 236 K
173 AD [2056 (M i 237
® 174 AE T 206 CE i 238
175 AF T 207 G 7 239 FF
° 176 B0 D 208 D0 & 240 FO
+ 177 Bl RN 209 DI A 241 R
2 78 B2 0 210 D2 o 242 R
3 79 B3 0 2 D3 6 M3 B
180 B4 0 212 D4 o6 244 F4
" 181 BS 0 213 D5 8 245 F5
1 182 B6 0 214 D6 b6 246 F6
183 B7 x 215 DI+ 24 W
, 184 B8 0 216 D8 ¢ 248 F8
! 185 B9 U 217 D9 U 249 F9
0 186 BA U 218 DA G 250 FA
» 187 BB 0 219 DB & 251 FB
Y% 188 BC 0 20 DC @ 252 K
i) 189 BD Y 221 DDy 253 PD
% 190 BE P 222 DE p 254 FE
i 191 BF B 23 DF § 255 FF

ASCll and Extended Character Sets | 609

You can view the entire character set in the Serial Monitor using this sketch:
/*

* display characters from 1 to 255

*/
void setup()
{

Serial.begin(9600);

for(int i=1; i < 256; i++)

{
Serial.print(i, BYTE);
Serial.print(", dec: ");
Serial.print(i,DEC);
Serial.print(", hex: ");
Serial.println(i, HEX);

}

}

void loop()
{

}

Note that some devices, such as LCD displays (see Chapter 11), may use different
symbols for the characters above 128, so check the data sheet for your device to see the
actual character supported.

610 | Appendix G: ASCIl and Extended Character Sets

Index

Symbols A

! (not) operator, 55 abs function, 64, 65

1= (not equal to) operator, 52 absolute value of numbers, 64

% (modulus) operator, 64, 179 AC line voltage

& (ampersand), 43 controlling devices, 330-332
& (bitwise AND) operator, 56 working with, 593

&& (logical AND) operator, 55 accel sketch, 215

&=operator, 58 acceleration, reading, 213

* (multiplication) operator, 61 accelerometer, Wii nunchuck, 214, 397—401
*= operator, 58 actions

+ (addition) operator, 61 based on conditions, 44

+ string operator, 35 based on variables, 50-52

+= operator, 58 actuators, activating, 446—450

- (subtraction) operator, 61 Adafruit Industries

-= operator, 58 Boarduino board, 3

/ (division) operator, 61, 63 wave shield, 308-311

/= operator, 58 XBee Adapter, 432, 433

< (less than) operator, 52 ADC (analog-to-digital converter), 441, 572
<<(bit-shift left) operator, 76 (see also analogRead function)
<<= operator, 58 ADCSRA register, 572

<= (less than or equal to) operator, 52 addition (+) operator, 61

<> (angle brackets), 544 AdjustClockTime sketch, 377

= (assignment) operator, 53 alarms

== (equal to) operator, 52 calling function with, 380-383
> (greater than) operator, 52 creating, 519-522

>= (greater than or equal to) operator, 52 Allen, Charlie, 241

>>(bit-shift right) operator, 76 ampersand (&), 43

>>= operator, 58 amplitude, defined, 183

~ (bitwise exclusive OR) operator, 56 analog panel meters, 259-260

{} (curly brackets), 46 analog pins, 550

| (bitwise OR) operator, 56 (see also digitalRead function)
|= operator, 58 about, 134, 550

|| (logical OR) operator, 55 adjusting LED brightness, 223-224
~ (bitwise negation) operator, 56 changing range of values, 154

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

611

common pin assignments, 603—-605
detecting input, 135
detecting rotation using gyroscope, 206—
207
displaying voltages, 158-161
increasing number of outputs, 255-259
measuring distance, 176
measuring temperature, 186
measuring values quickly, 571-572
measuring voltage, 162-164
pin arrangements, 133
reading multiple inputs, 155-158
reading voltage on, 152
responding to voltage changes, 161
saving values to logfiles, 121-124
sending values of, 109-112
sequencing multiple LEDs, 230-232
visual output and, 217
analog-to-digital converter (ADC), 441, 572
(see also analogRead function)
AnalogMeter sketch, 260
analogRead function
additional information, 153
changing range of values, 154
controlling servos, 267
detecting sound, 183
displaying voltages, 158-161
LED blinking code example, 16
measuring distance, 176, 177
measuring temperature, 186
measuring values quickly, 571-572
measuring voltages, 164
reading voltages, 152
responding to voltage changes, 161
sensors and, 165, 181
analogWrite function
adjusting LED brightness, 224
analog panel meters, 260
controlling brushed motor speed, 282
detecting mouse movement, 200
timers and, 548
visual output and, 217
angle brackets (<>), 544
animation effects
beating heart, 236-239
smiling face, 348-349
anodes
common, 226, 231
defined, 219

Arduino boards
about, 2
additional information, 3
communicating between, 421-424
interrupts and, 556
Linux environment, 5
Mac environment, 6
memory support, 531
pin arrangements, 133-135, 391, 603-605
serial communication, 82
setting up, 6
simultaneous tones and, 303
timers and, 548
uploading/running Blink sketch, 11-13
Windows environment, 6
Arduino build process, 532-535
Arduino environment
getting started with projects, 15-18
IDE installation, 4-6
introduction, 1
preparing sketches, 8-11
setting up Arduino boards, 6
Arduino Playground
about, 1, 518
troubleshooting problems, 599, 600
Arduino software, 2
(see also sketches)
about, 2
IDE installation, 4-6
version control and, 14
ArduinoMouse.pde (Processing sketch), 114
arguments
defined, 38
as references, 43
array sketch, 25
arrays
defined, 26
of LEDs, 253-255
in sketches, 25
strings and, 28-30, 31
ASCII character set
common control codes, 607
converting to numeric values, 93
null value, 28
reading RFID tags, 189
tables of, 607—610
zero value, 28
assignment (=) operator, 53
ATCN command, 439

612 | Index

ATDO02 command, 443
ATD13 command, 449
ATD14 command, 449
ATDH command, 437, 439
ATDL command, 437, 439
ATIA1234 command, 449
ATICFF command, 449
ATID command, 437, 443, 449
ATIR64 command, 443
ATIUI command, 449
Atmel ATmega 168/328 data sheets, 551
ATMY command, 437, 439, 449
atoi function, 36, 94
atol function, 36, 94
ATRE command, 443, 449
attachInterrupt function, 548, 556
ATWR command, 437, 449
Audacity utility, 311
audio output
about, 297-298
controlling MIDI, 311-314
detecting sound, 181-185
fading an LED, 305-308
generating audio tones, 305-308
making synthesizers, 314-316
multiple simultaneous tones, 303-305
playing simple melodies, 301-303
playing tones, 299-301
playing WAV files, 308-311
Auduino sketch, 314-316
AVR-GCC application, 534
avr-objdump tool, 534
Avrdude utility, 534
AVRfreaks website, 532, 535

B
 tag, 463
Babel Fish translation web app, 465
background noise, 167
backlight (LCD)
defined, 336
limiting current to, 355
bar graphs, 229-232, 242-245, 353-355
Bargraph sketch, 230, 242
Basic_Strings sketch, 28
batteries
connecting to/using, 592
reducing drain, 572-574
battery eliminator circuit (BEC), 271

baud rate
defined, 87
GPS, 204
Serial Monitor, 204
BCD (Binary Coded Decimal), 404
bed2dec function, 404
BEC (battery eliminator circuit), 271
Binary Coded Decimal (BCD), 404
binary format
displaying special symbols, 347
receiving data in, 105-106
sending data in, 89, 101-105

sending values from Processing, 107-109

bipolar steppers
about, 263
driving, 287-289

driving using EasyDriver board, 290-293

bit function, 72
bitClear function, 72, 576
bitFunctions sketch, 73
bitmaps for GLCD displays, 359-361
bitRead function
driving 7-segment LED displays, 247
functionality, 72
reading multiple analog inputs, 158
sending multiple pin values, 110
bits
sending pin values, 109-112
serial communication, 82
setting/reading, 72-75
shifting, 75
bits sketch, 56
bitSet function, 72, 576
bitwise operations, 56—58
bitWrite function, 72
blink function, 37, 341
Blink sketch
loading, 8, 11-13
running, 11-13
turning cursor on/off, 340
blink3 sketch, 39
BlinkLED function, 522-527
blinkLibTest sketch, 522
BlinkM module, 392-397
BlinkM sketch, 392
BlinkMTester sketch, 395
BlinkWithoutDelay sketch, 369, 551
BOB-08669 breakout board, 181
boolean data type, 22

Index | 613

bootloader, 531
Bray Terminal program, 88
breadboards
about, 591
solderless, 135
break statement, 50, 51
brushed and brushless motors
about, 262
controlling direction with H-Bridge, 277—
279, 280-282
controlling direction with sensors, 282—
287
controlling speed with H-Bridge, 280-282
controlling speed with sensors, 282-287
driving using speed controllers, 271
driving using transistors, 276
Brushed_H_Ardumoto sketch, 286
Brushed_H_Bridge sketch, 281
Brushed_H_Bridge_Direction sketch, 283
Brushed_H_Bridge_simple sketch, 277
Brushed_H_Bridge_simple2 sketch, 279
build process (Arduino), 532-535
built-in libraries, 515-517
byte data type
defined, 22
shifting bits, 75
ByteOperators sketch, 77, 79

C

.c file extension, 533
C language
converting strings to numbers, 36
preprocessor, 545
strings and, 30
camera sketch, 328
Canon Hack Development Kit, 329
capacitors
about, 579
connecting to sensors, 179
decoupling and, 593
carriage return (\r), 97
case statement, 51, 228
cathodes
common, 226, 231, 252
defined, 219
schematic symbol for, 221
ceil function, 68
Celsius temperature scale, 185, 410
char data type, 22

character strings (see strings)
characters/character values
comparing to numeric, 52—-54
converting to numeric, 93
creating custom, 347-349
data type representing, 22
displaying special symbols, 345-347
Charlieplexing
about, 220, 240
controlling LED matrix via, 239-245
Charlieplexing sketch, 240
chasing lights sequence, 232
circuit diagrams, 585
classes, libraries as, 522
client class (web server)
available method, 471
connected method, 471
println method, 471
read method, 471
clocks
displaying time of day, 373-380
real-time, 384-387
synchronizing, 502-507
coding techniques (see programming
techniques)
color, adjusting for LEDs, 226-229
comma-separated text, splitting into groups,
32-34
CommaDelimitedInput sketch, 96
CommaDelimitedOutput sketch, 95
common anode, 226, 231
common cathode, 226, 231, 252
communication protocols, 84
(see also serial communications; wireless
communication; specific protocols)
additional information, 451
defined, 84
comparison operators, 52—-54
compasses, detecting direction, 208-211
compilation process
conditional compilations, 543
defined, 8, 9
error messages, 10
compound operators, 58
concat function, 35
conditions
actions based on, 44
breaking out of loops based on, 49
compilations based on, 543

614 | Index

configureRadio function, 439
constant current drivers, 226
constants
additional information, 139
assigning values to, 54
programming techniques, 542-543
RAM usage and, 536
constrain function, 65
contact bounce, 141
continuous rotation servos, 267—269
control codes, 607
controller chips, 547-551, 547, 574
(see also specific types of controllers)
converting
ASCII characters to numeric values, 93
numbers to strings, 34-36
strings to numbers, 36, 94
Conway, John, 355
CoolTerm program, 435
Coordinated Universal Time (UTC), 504
cos function, 69
countdown timers, 144-148
counters
pulse, 567
repeating statements with, 47-49
timers as, 549
.cpp file extension, 533
curly brackets {}, 46
cursor (LCD), turning on/off, 340
cursor (mouse), moving, 112-115
cursorHide function, 363
customCharPixels sketch, 353
customChars sketch, 350
custom_char sketch, 348
CuteCom program, 88

D

data sheets, reading, 587
data types

Arduino supported, 21

binary format considerations, 104
date

alarms based on, 381

displaying, 376

keeping track of, 374
DC motors (see brushed and brushless motors)
DC offset, 184
debounce function, 142-144
Debounce sketch, 142

debouncing process, 141, 144-148
debugging
conditional compilations and, 543
memory management and, 540
sending information to computers, 86—89
decay rate (LED), 231
decimal format
BCD and, 404
displaying special symbols, 347
sending text in, 89
decoding IR signals, 321-324
decoupling, capacitors and, 593
default (case statement), 52
#define preprocessor command, 542-543
DEG_TO_RAD constant, 70
delay function
creating delays, 367
interrupts and, 548
playing tones, 301
simultaneous tones and, 305
timers and, 548
delay sketch, 367
delayMicroseconds function, 368
delays, time (see time delays)
delimiters, 95
DHCP (Dynamic Host Configuration Protocol)
DNS and, 460
IP addresses and, 452, 455458
third-party library, 456
dial, tracking movement of, 190-192, 195—
197
Digi International, 431
Digi-Key breadboard, 135
digital cameras, controlling, 327-329
digital pins, 550
(see also digitalRead function)
about, 134, 550
additional information, 139
common pin assignments, 603-605
configuring to read input, 19, 134
detecting input, 19, 134
detecting switch closing, 141-144
determining how long switch is pressed,
144-148
determining switch state, 136-139
internal pull-up resistors, 139-141
LED matrix example, 234
measuring pulse duration, 372
pin arrangements, 133

Index | 615

reading keypads, 149-152
saving values to logfiles, 121-124
sending values of, 109-112
setting quickly, 574-577
SPI devices, 391
visual output and, 217
digital thermometers, 408—412
digitalClockDisplay function, 377
digitalRead function
additional information, 139
determining switch state, 136
functionality, 19, 134
monitoring voltage, 137
digitalWrite function
additional information, 139
controlling solenoids and relays, 272
digital output and, 217
functionality, 19
internal pull-up resistors and, 141
limitations, 574-577
diodes
defined, 219, 580
snubber, 275, 593
direction
controlling for brushed motors, 277-279,
280-282-287
detecting (compass), 208-211
tracking (GPS), 190-192
Directory Name System (see DNS)
Display5vOrless sketch, 159
displayBlink function, 341
DisplayMoreThan5V sketch, 163
displayNumber function, 252, 415, 421
displays (see LCD displays)
distance, measuring, 173-179
division (/) operator, 61, 63
DNS (Directory Name System)
about, 452
DHCP and, 460
resolving IP addresses, 458—460
DNS library
finished function, 460
Init function, 460
resolve function, 460
do...while loop, 46
doEncoder function, 196
double data type, 22, 24
doubleHeightBars function, 354
draw function (Processing), 106

DrawBitmap function, 359
drawBox function, 363
DS1307 RTC chip, 384
DS1307RTC.h library, 384
DS1337 RTC chip, 384
Dual Tones sketch, 304
duration
determining for delays, 368-372
measuring for pulses, 372
setting for pulses, 559562
setting for timers, 557-559
Dynamic Host Configuration Protocol (see
DHCP)

E

EasyDriver board, 290-293
EEPROM library

about, 516

adding external memory, 404

clear function, 553

read function, 553

storing data, 551-554

write function, 553
EEPROM memory

about, 531

adding external, 404—407

storing data in, 551-554
802.15.4 standard, 431-437
electronics

additional information, 583

basic components, 579-583

tutorials about, 133
electronics speed controllers

defined, 263

driving brushless motors, 271
equal to (==) operator, 52
error messages

assigning values to constants, 54

compilation process, 11

uploading sketches, 12
Ethernet library

about, 451, 516

begin function, 454

security considerations, 471

sketches and, 470
Ethernet shield

IP addresses and, 455

setting up, 453—455
EZ1Rangefinder Distance Sensor sketch, 175

616 | Index

F

fabs function, 24
face, animation effect, 348-349
Fahrenheit temperature scale, 185, 468
Faludi, Robert, 431
finder.findUtil method, 486
Firmata library, 112, 516
flash function, 558
flash memory (see program memory)
floating-point numbers
data type representing, 22
memory consumption, 160
precision of, 24
rounding up/down, 68
in sketches, 23
floor function, 68
flow control
additional information, 105
binary format considerations, 104
defined, 104
for loop
chasing lights sequence, 233
LED matrix example, 236
repeating statements with counters, 47—49
ForLoop sketch, 47
formatted text
LCD displays and, 337-340
sending, 89-91
formatting web server requests, 479-483
forms, creating web pages with, 483—486
forward voltage, 219
4051 multiplexer, 156-158
FrequencyCounter library, 569
FrequencyTimer2 library, 244
function body, 43
function declarations, defined, 43
function header, 43
function overloading, 103
functionReferences sketch, 42
functions, 38
(see also specific functions)
adding to sketches, 38—41
Arduino reference, 41
creating, 38
creating alarms to call, 380-383
naming conventions, 40
RAM usage and, 536
returning multiple values, 41-43
semicolon in, 40, 43

trigonometric, 69
Futurlec LEDMS8S8R, 234

G

game controllers (see PlayStation game
controller)
Game of Life simulation, 355
GET command, 465, 468
getCount function, 568
getDistance function, 179, 540
getFloat function, 463
getkey function, 151
getTableEntry function, 540
GettingStarted sketch, 131
getValue function, 157, 463
GLCD (graphical LCD) displays
about, 333
connecting, 355-359
creating bitmaps for, 359-361
pin connections, 355
printing output to, 380
GLCD library, 355
gled sketch, 357
GLCDdiags test sketch, 359
GLCDImage sketch, 360
glcdMakeBitmap utility, 359
global variables, 42, 147, 536
GNU screen program, 88
Google Calculator, 462
Google Earth
about, 116
additional information, 121
controlling movement in, 115-121
downloading, 120
Google Finance, 464, 466
Google Weather, 466—-468
Google XML API, 466
GoogleEarthFS_P sketch, 117, 120
GoogleEarthPSX sketch, 116
GPS module
creative projects, 205
getting location from, 201-206
receiving data from, 128-131
granular synthesis, 315
graphical LCD displays (see GLCD displays)
Gravitech 7-segment display shield, 412—415
greater than (>) operator, 52
greater than or equal to (>=) operator, 52
Greenwich Mean Time, 504

Index | 617

gyro sketch, 207
gyroscope, detecting rotation with, 206-207

H

.h file extension, 359, 533
H-Bridge
about, 262
controlling brushed motor direction, 277-
279, 280-282
controlling brushed motor speed, 280-282
driving bipolar stepper motors, 287-289
Hagman, Brett, 301, 303
hardware problems, troubleshooting, 599-601
hardware sleep function, 573
HardwareCounting sketch, 567
Hart, Mikal, 125, 128, 201, 206
Hello Matrix sketch, 254
hexadecimal format
displaying special symbols, 347
sending text in, 89
HID (Human Interface Devices), 115
highByte function
additional information, 75, 104
functionality, 77
sending binary data, 102
Hitachi HD44780 chip, 333, 334-337, 347
hiWord macro expression, 78
HM55bCompass sketch, 208
hostnames, resolving to IP addresses, 458—460
HTML (HyperText Markup Language)
about, 452
 tag, 463
formatting requests, 479-483
GET command, 465, 468
POST command, 465, 483—486—493
<td> tag, 482
<tr> tag, 482
HTTP (Hypertext Transfer Protocol), 452
hueToRGB function, 228, 392-397
Human Interface Devices (HID), 115
HyperText Markup Language (see HTML)
Hypertext Transfer Protocol (HTTP), 452

I
12C (Inter-Integrated Circuit)
about, 389-391
adding EEPROM memory, 404—407

communicating between Arduino boards,
421-424
controlling RGB LEDs, 392-397
driving 7-segment LEDs, 412-415
integrating port expanders, 416—-418
interfacing to RTCs, 401-404
measuring temperature, 408—412
RTC chips and, 387
Wii nunchuck accelerometer, 397-401
12C-7Segment sketch, 416
12CDebug object, 423
12C_7Segment sketch, 413
12C_EEPROM sketch, 404
12C_Master sketch, 422, 423
12C_RTC sketch, 401
12C_Slave sketch, 422
12C_Temperature sketch, 408
ic2EEPROM_Read function, 407
ic2EEPROM_ Write function, 407
ICR1 (Input Compare Register), 561
IDE (integrated development environment)
functionality, 2
installing, 4-6
preparing sketches with, 8-11
IEEE 802.15.4 standard, 431-437
if statement, 44
if...else statement, 45
images, displaying on LED matrix, 236-239
#include preprocessor command, 532, 533,
541
indexOf function, 30
infrared technology (see IR (infrared)
technology)
init function, 21
Input Capture timer facility, 570
Input Compare Register (ICR1), 561
InputCapture sketch, 569
int data type
defined, 21
extracting high/low bytes, 77-78
from high/low bytes, 78-80
shifting bits, 75
integrated circuits, 581
integrated development environment (see IDE)
Inter-Integrated Circuit (see [2C)
Internet Protocol (IP), 452
Internet time server, 502—-507
interpolating technique, 178
interrupt handlers, 548, 556

618 | Index

interrupt service routine, 548
interrupts
additional information, 551
defined, 548
usage examples, 554557
Interrupts sketch, 555
IP (Internet Protocol), 452
IP addresses
DNS service and, 452, 458-460
hardcoded, 453-455
local, 452
obtaining automatically, 455-458
unique, 470
IR (infrared) technology
decoding signals, 321-324
imitating signals, 324-327
remote control and, 317, 318-320
sensors and, 177-179
IR receiver module, 318-320, 556
ir-distance sketch, 177
ir-distance_Progmem sketch, 539
IRecv object
decode function, 320
enableIRIn function, 320
resume function, 320
IRremote library, 317, 318-320, 323
IRsend object, 326
irSend sketch, 324
IR _remote_detector sketch, 318
itoa function, 35

J

Jaggars, Jesse, 507
Jameco breadboard, 135
Java language, 115
(see also Processing open source tool)
creating bitmaps, 360
Robot class, 115
split method, 97
joysticks
accelerometer and, 214
controlling Google Earth via, 116-121
getting input from, 211-213
.jpg file extension, 492
JSON format, 453

K

Keypad sketch, 149

keypads
defined, 581
reading, 149-152
Knight, Peter, 314, 572
KnightRider sketch, 233
knock sensors, 180
KS0108 panel, 356

L

1293 H-Bridge, 282-287
1.293D H-Bridge, 277-279
Ladyada website, 205, 311
LANC, 329
lastIndexOf function, 30
LCD displays, 355
(see also GLCD displays)
about, 333
additional information, 337
creating custom characters, 347-349
displaying special symbols, 345-347
formatting text, 337-340
pin connections, 334
pixels smaller than single character, 352—
355
printing output to, 380
scrolling text, 342-344
symbols larger than single character, 349—
352
text-based, 334-337
turning cursor on/off, 340
turning display on/off, 340
LDR (light dependent resistor), 15, 170
leading zeros, 415
learnKeyCodes function, 323
LED bar graph (decay version) sketch, 231
LED matrix
controlling via Charlieplexing, 239-245
controlling via multiplexing, 234-236
controlling via shift registers, 254
displaying images on, 236-239
LEDBrightness sketch, 223
LEDs
about, 581
adjusting brightness of, 223-224, 537-540
adjusting color of, 226-229
blinking code example, 13—15-18
chasing lights sequence, 232
connecting and using, 220-223
controlling array of, 253-255

Index | 619

controlling with BlinkM module, 392-397
creating bar graphs, 229-232, 242-245
detecting motion, 172
detecting mouse movement, 197-200
detecting movement, 167-169
digital pins and, 134
driving 7-segment displays, 245-248-250—
252,412-415, 418-421
driving high-power, 224-226
fading, 305-308
imitating IR signals, 324-327
increasing number of analog outputs, 255—
259
IR remote control and, 318
knock sensors and, 181
lighting when switch is pressed, 136-139
measuring distance, 173
multiplexing and, 220
printing output to, 380
sequencing multiple, 229-232
specifications, 219
triggering voltage alarms, 162-164
wiring XBees to, 447
LEDs sketch, 221
LED_intensity sketch, 258
LED_state sketch, 244
Leone, Alex, 255
less than (<) operator, 52
less than or equal to (<=) operator, 52
libraries, 515
(see also specific libraries)
about, 515
additional information, 516
built-in, 515-517
as classes, 522
creating, 522-527-529
declaring constants, 537
declaring global variables, 537
installing third-party, 517
memory usage and, 521
modifying, 518-522
sketches and, 517
using other libraries, 527-529
light
chasing lights sequence, 232
controlling, 218-220
detecting changes in, 170
light dependent resistor (LDR), 15, 170
Lindsay, Phillip, 115

line feed (\n), 97
Linux environment
Arduino IDE installation, 5
XBee Series 1 configuration, 435
liquid crystal displays (see LCD displays)
LiquidCrystal library
about, 89, 334, 516
additional information, 337, 340
clear function, 339
creating custom characters, 349
display function, 341
FormatText sketch, 338
Hello World sketch, 336
noDisplay function, 341
print function, 339, 347
ScrollDisplayLeft function, 342-344
ScrollDisplayRight function, 342-344
setCursor function, 339
Special Chars sketch, 345
Lite-On LTC-4727]R, 250
Lite-On LTD-6440G, 420
LM35 heat detection sensor, 185-187
Im35 sketch, 185
local IP addresses, 452
logfiles, saving data to, 121-124
logical operators, 55
long data type
defined, 21
extracting high/low bytes, 77-78
from high/low bytes, 78-80
shifting bits, 75
lookAround function, 285
loop function, 21
lowByte function
additional information, 75, 104
functionality, 77
sending binary data, 102
lowWord macro expression, 78
ltoa function, 35

M

MAC address
about, 452
unique, 454, 470
Mac environment
Arduino IDE installation, 5
moving mouse cursor, 112-115
XBee Series 1 configuration, 435
macro expressions, 78

620 | Index

main function, 20
makeLong function, 79
map function
additional information, 155
changing range of values, 154
heart beating effect, 239
LED blinking code example, 16
Map sketch, 154
marquee function, 343
Marquee sketch, 343
master devices (12C)
communicating between Arduino boards,
421-424
defined, 390
master devices (SPI), 391
mathematical operators
constraining numbers to range of values,
65
determining absolute value, 64
extracting high/low bytes, 77-78
finding remainder after division, 63
incrementing/decrementing values, 62
int from high/low bytes, 78-80
minimum/maximum of values, 66
precedence considerations, 62
raising numbers to a power, 67
random number generation, 70-72
rounding floating-point numbers, 68
setting/reading bits, 7275
shifting bits, 75
simple math using, 61
square roots, 68
trigonometric functions, 69
Matrix library, 253, 254, 516
matrixMpx sketch, 234
matrixMpxAnimation sketch, 237
max function, 66, 232
Max7221_digits sketch, 250
MAX72xx devices
controlling array of LEDs, 253-255
driving 7-segment displays, 250-252, 418—
421
MaxBotix EZ1 sensor, 175
McCauley, Mike, 427
Media Access Control address (see MAC
address)
Mega boards
EEPROM memory in, 553
GLCDs and, 356

12C and, 390
Input Capture timer facility, 570
interrupts and, 556
pin arrangements, 134, 391, 603—-605
serial ports, 83, 124-127
simultaneous tones and, 303
timers and, 549
melodies, playing, 301-303
memory management, 531
(see also specific types of memory)
adding external, 404-407
additional information, 537
Arduino boards and, 531
bitmaps and, 359
constants and, 542543
determining free/used, 535-537
floating-point numbers and, 160
libraries and, 521
storing/retrieving numeric values, 537-540
storing/retrieving strings, 540-542
web pages and, 486—493
memoryFree function, 535
mesh networks, XBee and, 425
messages
communications protocol, 84
MIDI, 311-314
receiving binary data, 105-106
receiving multiple text fields, 98-101
sending binary data, 101-105
sending binary values from Processing, 107—
109
sending multiple text fields, 95-98
sending via wireless modules, 425-431
sending/receiving with UDP, 496-500
Twitter, 493—-496
Microchip 24L.C128 EEPROM, 404, 407
microphone sketch, 182
microphones, detecting sound, 181-185
MIDI (Musical Instrument Digital Interface),
298,311-314
MIDI library, 314
midiOut sketch, 312
millis function
additional information, 372
creating delays, 368
duration of delays, 368-372
interrupts and, 548
managing time, 239
simultaneous tones and, 303, 305

Index | 621

timers and, 548
millisDuration sketch, 369
MIME (Multipurpose Internet Mail
Extensions), 492
min function, 66
Modern Device Bare Bones Boards, 573
modulus (%) operator, 64, 179
momentary tactile switches, 138
MorningAlarm function, 382
Morse sketch, 574
moserial program, 88
motion detection, 171
motors, 581
(see also brushed and brushless motors;
servo motors; solenoids and relays; stepper
motors)
mouse
detecting movements of, 197-200
moving cursor, 112-115
Mouse sketch, 197
mouseBegin function, 199
MsTimer2 library, 557
multimeters, 135, 333
multiplexer sketch, 156
multiplexers, reading multiple inputs, 156—
158
multiplexing technique
about, 220
controlling LED matrix via, 234-236
driving 7-segment LED displays, 248-250
multiple_alarms sketch, 519
multiplication (*) operator, 61
Multipurpose Internet Mail Extensions
(MIME), 492
MultiRX sketch, 130
Musical Instrument Digital Interface (MIDI),
298,311-314
myDelay function, 370

N
\n (line feed), 97
naming conventions for functions, 40
Narcoleptic library, 572
negative numbers, 94
neocat, 493
Network Time Protocol (NTP), 502
NewSoftSerial library
downloading, 205
getting location from GPS, 203

receiving data from multiple devices, 128—
131
sending data to multiple devices, 125-127
NewSoftSeriallnput sketch, 128
NewSoftSerialOutput sketch, 125
NKC Electronics, 255, 286
NMEA 0183 protocol, 201-206
noBlink function, 341
not (!) operator, 55
not equal to (!=) operator, 52
NTP (Network Time Protocol), 502
null value, 28
numbers/numeric data
comparing to character, 52-54
constraining to range of values, 65
converting ASCII characters to, 93
converting strings to, 36, 94
converting to strings, 34-36
determining absolute value, 64
LCD displays and, 334-337
negative, 94
program memory and, 537-540
raising to a power, 67
sending from Arduino, 89-91
square roots, 68
NumberToString sketch, 35
nunchuck_accelx function, 401
nunchuck_decode_byte function, 401
nunchuck_get_data function, 400
nunchuck_init function, 400
nunchuck_lines sketch, 398
nunchuck_setpowerpins function, 399

0

OCR (Output Compare Register), 561
Ohm’s law, 222
onceOnly function, 383
optocouplers (optoisolators)
about, 318, 581
controlling digital cameras, 329
triggering remote controls, 330-332
OptoRemote sketch, 331
Output Compare Register (OCR), 561

P

Pachube feeds
monitoring, 507-510
updating, 510-513

622 | Index

packing structures, 104, 105
panel meters, 259-260
Parallax
HMS55B compass module, 208-211
PING))) ultrasonic distance sensor, 173—
176
PIR Sensor, 171
RFID reader, 187-190
parameters
defined, 38
as references, 43
Passive Infrared (PIR) sensors, 171
PC environment (see Windows environment)
PCF8574A port expander, 416-418
PCM (Pulse-Code Modulation), 308
.pde file extension, 14
persistence of vision, 220
Philips
RC-5 remote, 317
RC-6 remote, 317
SAA1064 12C to 7-segment driver, 412—
415
photocells, 581
physical output (see brushed and brushless
motors; servo motors; solenoids and
relays; stepper motors)
PI constant, 70
Piezo devices
defined, 297, 581
detecting vibration, 180
generating audio tones, 306
piezo sketch, 180
Ping))) Sensor sketch, 173
pinMode function
additional information, 139
digital output and, 217
functionality, 19, 134
internal pull-up resistors and, 141
pins (see analog pins; digital pins)
PIR (Passive Infrared) sensors, 171
PIR sketch, 172
pixels
defined, 238
in GLCD displays, 358
smaller than single character, 352-355
PJRC, 3
playMidiNote function, 313
playNote function, 303
PlayStation game controller

controlling Google Earth via, 116-121
getting input from, 211-213
sensors and, 166
playTone function, 305-308
Pocket Piano shield, 308
polarity, defined, 220
polling, defined, 192, 548
Pololu breakout board, 285
port expanders, integrating, 416-418
port forwarding, 470
POSIX time, 374
POST command, 465, 483—486—493
Pot sketch, 152
potentiometers
about, 135, 582
changing range of values, 154
controlling servos with, 266
reading voltage, 152
wiper, 152
Pot_Debug sketch, 543
pow function, 67
power supplies
connecting/using external, 592
reducing battery drain, 572-574
precedence of operators, 62
preprocessor
about, 532
additional information, 545
constant values and, 542543
controlling sketch build, 543
preprocessor macros, 541
prescaler, defined, 549
primitive types, simple, 21
printDigits function, 377
Processing open source tool
about, 85
additional information, 85, 98
controlling Google Earth, 115-121
createWriter function, 124
creating bitmaps, 359
DateFormat function, 123
draw function, 106
moving mouse cursor, 112-115
receiving binary data, 105-106
saving data to logfiles, 121-124
sending binary values, 107-109
sending multiple text fields in messages, 95—
98
sending pin values, 109-112

Index | 623

sending/receiving messages with UDP, 497
setting up environment, 131
setup function, 106
SyncArduinoClock sketch, 376
Wii nunchuck sketch, 398
ProgmemCurve sketch, 537
program memory
about, 531
Arduino boards and, 531
storing/retrieving numeric values, 537-540
storing/retrieving strings, 540-542
web pages and, 486-493
programming techniques, 370
(see also specific sketches)
Arduino build process, 532-535
conditional compilations, 543
constants and, 542-543
delaying code execution, 370
memory usage and, 535-537
storing/retrieving numeric values, 537-540
storing/retrieving strings, 540-542
troubleshooting problems, 595-598
programs (see sketches)
projects, getting started with, 15-18
prototyping
breadboards and, 592
defined, 43
PSX (see PlayStation game controller)
PSX sketch, 212
pull-down resistors
defined, 134
switched connected using, 136
pull-up resistors
defined, 134
enabling internal, 139-141
switch connected using, 138
Pullup sketch, 140
Pulse Width Modulation (see PWM)
Pulse-Code Modulation (PCM), 308
pulseln function, 174, 372
Pulseln sketch, 372
pulses
counting, 549, 567-569
displaying in Serial Monitor, 555-557
generating, 562-564
measuring accurately, 569-571
measuring duration, 372
setting width/duration, 559562
pulseTimer2 sketch, 557

Pushbutton sketch, 44, 45, 136

PuTTY program, 88, 435

PWM (Pulse Width Modulation)
additional information, 550
adjusting LED brightness, 223
analog panel meters, 259-260
changing frequency for timers, 565-567
defined, 217
extender chips, 255-259

pwm function, 562

R

\r (carriage return), 97
RadioShack breadboard, 135
RAD_TO_DEG constant, 70
RAM (random access memory), 531, 535-537
random function, 70-72, 101
random number generation, 70-72
Random sketch, 71
randomSeed function, 70
Read a rotary encoder sketch, 190
readArduinolnt function, 112
readStatus function, 211
real-time clock (RTC), 384-387, 401-404
RealTerm program, 88
ReceiveBinaryData_P sketch, 105
ReceiveMultipleFieldsBinaryToFile_P sketch,
122
ReceiveMultipleFieldsBinary_P sketch, 111
references, parameters as, 43
registers, 547
(see also specific types of registers)
defined, 547
time operations and, 549
timer mode settings, 551
relational operators, 52—54
RelationalExpressions sketch, 52
relays (see solenoids and relays)
remainder after division, 63
remote control
about, 317
controlling AC devices, 330-332
controlling digital cameras, 327-329
decoding IR signals, 321-324
imitating signals, 324-327
infrared, 317, 318-320
wireless technology and, 317
RemoteDecode sketch, 321
repeating

624 | Index

sequence of statements, 45
statements with counters, 47—49
Repeats function, 382
reset function, 211
resistive sensors, 171
resistors
about, 582
calculating value in ohms, 260
LDR, 170
LED matrix and, 236
Ohm’s law, 222
pull-down, 134, 136
pull-up, 134, 138
short circuits and, 219
switches without external, 139-141
variable, 135, 581
RespondingToChanges sketch, 161
reverse EMF, 272
RFID sketch, 188
RFID tags, reading, 187-190
RGB color scale, 226-229, 392-397
RGB_LEDs sketch, 227
Robertson, Matt, 458
Robot class (Java)
additional information, 115
mouseMove method, 115
rotary encoders
functionality, 192
measuring pulses from, 556
tracking movement of dial, 190-192, 195—
197
tracking multiple, 193-195
RotaryEncoderInterrupt sketch, 195
RotaryEncoderMultiPoll sketch, 193
rotation
detecting with gyroscope, 206-207
measuring, 190-192, 193-195
rounding floating-point numbers, 68
RS-232 standard, 83, 85
RTC (real-time clock), 384-387, 401-404

S

schematic diagrams, 585

SCL connection (12C), 390, 409
Scroll sketch, 342

scrolling text, 342—344

SD library, 516

SDA connection (I12C), 390, 409
security, Ethernet library and, 471

Seeed Studio Bazaar, 3
semicolon in functions, 40, 43
sendBinary function, 103, 110
SendBinary sketch, 101, 428
sendCommand function, 252, 420
SendingBinaryFields sketch, 109
SendingBinaryToArduino sketch, 107
SendInput API function, 115
sendMessage function, 107, 495
sensors
about, 165
additional information, 167
connecting capacitors to, 179
controlling an LED matrix, 234-236
controlling brushed motors, 282-287
controlling Google Earth via, 115-121
controlling servos with, 266
detecting direction, 208-211
detecting light level changes, 170
detecting motion, 171
detecting mouse movements, 197-200
detecting movement, 167-169
detecting rotation with gyroscope, 206—
207
detecting sound, 181-185
detecting vibration, 180
getting input from game control pad, 211—
213
getting location from GPS, 201-206
measuring distance, 173-179
measuring temperature, 185-187, 510-513
reading acceleration, 213
reading RFID tags, 187-190
reading voltage, 152
resistive, 171
sending data between XBees, 440—444
sending Twitter messages, 493—496
sequencing multiple LEDs, 232
temperature, 408—412
tracking movement of dial, 190-192, 195—
197
tracking multiple rotary encoders, 193-195
serial communications
about, 81-85
additional information, 91
controlling Google Earth, 115-121
controlling servos, 269-270
getting location from GPS, 202
moving mouse cursor, 112-115

Index | 625

receiving binary data, 105-106
receiving data, 92-95
receiving data from multiple devices, 128—
131
receiving multiple text fields in messages,
98-101
saving data to logfiles, 121-124
sending binary data, 101-105
sending binary values from Processing, 107—
109
sending data to multiple devices, 124-127
sending debug information, 86-89
sending formatted text, 89-91
sending multiple text fields in messages, 95—
98
sending numeric data, 89-91
sending pin values, 109-112
serial hardware, 82
serial libraries, 84
serial message protocol, 84
setting up Processing environment, 131
TellyMate shield and, 362
Serial library
available function, 401, 471
begin function, 86
8-bit values, 92
print function, 86, 88, 90, 102
println function, 19, 88, 90, 97
read function, 108
Serial Monitor
controlling brushed motors, 281
depicted, 81
DHCP server values, 457
displaying pulses in, 555-557
displaying voltages, 158-161
functionality, 17
getting location from GPS, 203
measuring distance, 173
printing sequential numbers, 86—-89
printing values to computer, 19
setting clocks, 376
setting pulse period, 557-559
starting, 86
Serial Peripheral Interface (see SPI)
Serial Terminal window, 437
SerialFormatting sketch, 89
serialln function, 211
SerialMouse sketch, 113
serialOut function, 211

SerialOutput sketch, 86
SerialReceive sketch, 92
SerialReceiveMultipleFields sketch, 98
Servo library
about, 264, 516
attach method, 265
timers and, 548
Servo motors
about, 261
controlling from serial port, 269-270
controlling multiple, 266
controlling position of, 264-265
speed of continuous rotation servos, 267—
269
setColor function, 397
setPulseWidth function, 561
setSpeed function, 285
setSyncProvider function, 385
setTime function, 374, 383
setup function (Arduino), 21
setup function (Processing), 106
SevenSegment sketch, 245
SevenSegmentMpx sketch, 248
shaken sketch, 168
Sharp GP2YOAO02YKOF sensor, 177-179
shift registers
controlling LED arrays, 253-255
driving 7-segment displays, 250252
Shirriff, Ken, 317
short circuits, 219
show function, 239
showDigit function, 247, 250
showPrivate function, 478
showSymbol function, 347
showXY function, 363
signed keyword, 22
SimpleBrushed sketch, 276
SimpleClientGoogleWeatherDHCP sketch,
466
SimpleClientwFinder sketch, 462
SimpleRead sketch, 85, 105
SimpleReceive sketch, 427
SimpleSend sketch, 427
sine function, 69
sizeof function, 231, 428
Sketch Editor
functionality, 8
opening, 13
sketches, 195

626 | Index

(see also specific sketches)
actions based on conditions, 44
actions based on variables, 50-52
Arduino build process and, 533
arrays in, 25-28
bitwise operations, 56—58
breaking out of loops, 49
comparing character/numeric values, 52—
54
comparing strings, 54
compound operators, 58
controlling build of, 543
converting numbers to strings, 34-36
converting strings to numbers, 36
creating, 13-15
defined, 2, 9
error messages, 10, 12
floating-point numbers in, 23
functional blocks in, 38—41
LED blinking code example, 13—15-18
libraries and, 517
logical comparisons, 55
manipulating strings, 28-34
preparing with IDE, 8-11
repeating sequence of statements, 45
repeating statements with counters, 47—49
returning multiple values from functions,
41-43
saving, 11, 13-15
simple primitive types, 21
structuring, 20
slave devices
address numbers and, 390
communicating between Arduino boards,
421-424
defined, 390
identifying, 391
sleep function, 573
SN754410 H-Bridge, 277
snubber diodes, 275, 593
SoftwareSerial library, 126-127, 203, 516
solderless breadboards, 135
solenoids and relays
about, 262, 582
controlling, 272-273
solid state relay (SSR), 273
sound (see audio output)
Southern Hemisphere sketch, 202, 203
SparkFun

12-button keypad, 149-152
accelerometer selection guide, 214
Ardumoto shield, 286, 289
Audio-Sound Module, 311
BOB-00099 data sheet, 387
Electret Microphone, 181
green LEDs, 255
LISY300AL breakout board, 206
MIDI breakout shield, 314
MP3 breakout board, 311
PIR Motion Sensor, 171
PRT-00137 breadboard, 135
ROB-08449 vibration motor, 274
ROB-09402 breakout board, 285
WRL-08770, 425
‘WRL-08946, 425
XBee Explorer USB, 433
speakers, defined, 582
speed
continuous rotation servos and, 267—269
controlling for brushed motors, 280-282—
287
tracking movement of dial, 190-192
speed controllers
defined, 263
driving brushless motors, 271
SPI (Serial Peripheral Interface)
about, 389-391
driving 7-segment displays, 418-421
SPI library, 391, 517
SPI_MAX7221_0019 sketch, 418
split method (Java), 97
SplitSplit sketch, 32, 33
Sprite library, 517
sqrt function, 68
square roots, 68
SREG (interrupt registers), 197
SSR (solid state relay), 273
startMeasurement function, 211
statements
repeating sequence of, 45
repeating with counters, 47-49
static variables, 147
Stepper library, 287, 517
stepper motors
about, 263, 582
driving bipolar, 287-289, 290-293
driving unipolar, 293-295
Stepper sketch, 294

Index | 627

Stepper_bipolar sketch, 287
Stepper_Easystepper sketch, 290
strcat function, 31
stremp function, 31, 54
strepy function, 31
Streaming library, 91
String class, 35, 536
string data type, 22
String library
additional information, 30
C language and, 30
manipulating strings, 28-30
strings
allocating space for, 536
arrays and, 28-30, 31
C language and, 30
comparing, 31, 54
concatenating, 31
converting numbers to, 34-36
converting to numbers, 36, 94
copying, 31
data type representing, 22
declaring, 31
defined, 28
determining length of, 31
manipulating, 28-30
multiple fields in, 95-98
null in, 28
splitting comma-separated text into groups,
32-34
storing/retrieving in program memory, 540—
542
strlen function, 31
strncmp function, 55
strtok_r function, 34
structures
binary format considerations, 104
packing, 104, 105
substring function, 33
subtraction (-) operator, 61
swap function, 42, 43
swap sketch, 42
Sweep sketch, 264-265
switch statement, 50-52
SwitchCase sketch, 50
switches
about, 583
detecting closing of, 141-144
detecting movement and, 167-169

determining state of, 136-139

determining time in current state, 144-148

hacking remote control, 330-332

interrupts and, 548

reading multiple analog inputs, 157-158

tactile, 138, 583

without external resistors, 139-141
switchTime function, 146—-148
SwitchTime sketch, 145
SwitchTimeMultiple sketch, 147
symbols

creating custom, 347-349

displaying, 345-347

larger than single character, 349-352
SyncArduinoClock sketch, 376
synchronization

binary data and, 104

clock software, 502-507
synthesizers

making, 314-316

MIDI, 311-314

T

tactile switches, 138, 583
takePicture function, 329
tan function, 69
TCP (Transmission Control Protocol), 452
<td> tag, 482
TellyBounce sketch, 364
TellyMate shield, 361-366
TellyMate sketch, 361
temperature, measuring, 185-187, 408—412,
510-513
Texas Instrument TMP75, 408—412
text fields/data
displaying on TV, 361-366
formatting for LCD displays, 337-340
LCD displays and, 334-337
receiving in messages, 98-101
scrolling, 342-344
sending formatted, 89-91
sending in messages, 95-98
TextFinder library
about, 99, 452, 463
find method, 100
findUtil method, 100
getFloat method, 100
getString method, 100
getValue method, 100

628 | Index

TextString library, 28

theremin, 316

thermometers, digital, 408—412

tilt sensors, 167-169, 342344

tilt sketch, 167

time delays, 239
(see also delay function)
animation effects and, 239
creating, 367
setting delay period, 233

time lapse photography, 327

Time library, 373-380, 383, 518

time measurement, 239
(see also millis function)
alarms to call functions, 380-383
displaying time of day, 373-380
duration of delays, 368-372
duration of pulses, 372
for pressed switches, 144-148
real-time clocks, 384-387, 401-404
reducing battery drain, 572-574
synchronizing clock software, 502-507
time conversion tools, 380

Time sketch, 373

TimeAlarmExample sketch, 381

TimeAlarms library, 381-383, 518-522

timebase, defined, 549

TimedAction library, 371

timeout, specifying, 373

timer registers, 549

Timerl library, 560

timers
additional information, 550
changing PWM frequency, 565-567
countdown, 144-148
defined, 382
setting duration, 557-559
setting pulse width/duration, 559-562
types supported, 548

TimeRTC sketch, 384

TimeRTCSet sketch, 386

TimeSerial sketch, 375

Time_NTP sketch, 505

TinyGPS library, 201-206, 205

TLC sketch, 255

TLC5940 chip, 255-259

Tlc5940 library
about, 255
additional information, 259

clear method, 257
init method, 256
NUM_TLCS constant, 259
set method, 257
setAll method, 257
update method, 257
Todbot adapters, 397
tone function
about, 297
multiple simultaneous tones, 303
playing simple melodies, 301-303
playing tones, 299-301
Tone library, 301, 303
Tone sketch, 299
torque, motor, 263
Toshiba FB6612FNG, 285
<tr> tag, 482
transducers, 301
Transistor-Transistor Logic (TTL), 82
transistors
about, 583
choosing for switching, 587
controlling solenoids and relays, 272
driving brushed motors, 276
driving high-power LEDs, 224
Transmission Control Protocol (TCP), 452
transmitCarrier function, 577
trigonometric functions, 69
troubleshooting
device connections, 264
hardware problems, 599-601
software problems, 595-598
XBee modules, 431
TRS connector, 327
TTL (Transistor-Transistor Logic), 82
TTL level, defined, 82
TV, displaying text on, 361-366
Twinkle sketch, 301
Twitter library
downloading, 493
post function, 494
wait function, 494
Twitter messages, sending, 493—-496

U

UARTs, 131

UDP (User Datagram Protocol), 496-500, 504
UdpNip sketch, 502

UDPSendReceive sketch, 498

Index | 629

UDPSendReceiveStrings sketch, 496
UDPTest sketch, 500
ULN2003A Darlington driver chip, 293-295
unipolar steppers

about, 263

driving, 293-295
Unix time, 374, 380
unsigned keyword, 22
USB protocol

boards and, 573

digital pins and, 134

HID and, 115

MIDI devices and, 314

serial communications and, 82

XBee adapters, 433
User Datagram Protocol (UDP), 496-500, 504
USGlobalSat EM-406A GPS module, 203
UTC (Coordinated Universal Time), 504

v

variable resistors, 135, 581
variables
actions based on, 50-52
defined, 42
global, 147, 536
simple primitive types, 21
static, 147
volatile, 196, 556
version control, 14
Vibrate sketch, 274
Vibrate_Photocell sketch, 275
vibration
detecting, 180
making objects shake, 273-275
VirtualWire library, 427-431
visual output (see LEDs)
void data type, 22
volatile variables, 196, 556
voltage
changing range of values, 154
digital monitoring, 137
digital output and, 217
displaying, 158-161
forward, 219
knock sensors and, 180
LCD displays and, 336
LED specifications, 219
measuring, 162-164
measuring pulse duration, 372

reading on analog pins, 152

responding to changes in, 161

reverse EMF, 272
voltage divider, 162
VW_MAX_MESSAGE_LEN constant, 430

W

WAV files, playing, 308-311
WaveShieldPlaySelection sketch, 308
web pages
creating with forms, 483-486
handling requests for, 474—479
large amounts of data and, 486—493
web servers
formatting requests, 479—483
handling requests, 471-474
handling requests for specific pages, 474—
479
requesting data from, 462—466
requesting data in XML, 466—468
setting up Arduino, 469—471
WebClientDHCP_DNS sketch, 460
WebClientDNS sketch, 458
WebClientGoogleFinance sketch, 464
WebClient_Babelfish sketch, 465
Webduino web server, 493
WebServerMultiPage sketch, 475
WebServerMultiPageHTML sketch, 479
WebServerMultiPageHTMLProgmem sketch,
486
WebServerParsing sketch, 472
WebServerPost sketch, 483
Web_Server sketch, 469
while loop, 46
Wii nunchuck
accelerometer in, 214, 397-401
controlling Google Earth via, 116, 120
WiichuckSerial sketch, 120
Windows environment
Arduino IDE installation, 6
moving mouse cursor, 112-115
XBee Series 1 configuration, 435
XBee Series 2 configuration, 433
Wire library
about, 391, 517
accessing RTCs, 401-404
adding, 394
additional information, 391
available function, 401

630 | Index

begin function, 400 connecting to networks, 431-437

beginTransmission function, 407 ZTerm program, 88
creating libraries example, 527
endTransmission function, 400
receive function, 401, 403, 410
requestFrom function, 400, 403, 407
send function, 400, 413

wireless communication
activating actuators, 446—450
connecting to 802.15.4 network, 431-437
connecting to ZigBee networks, 431-437
remote controls and, 317
sending messages to XBees, 438—439
sending messages via, 425-431
sensor data between XBees, 440

word function, 79-80

X

X-CTU application
XBee Series 1 configuration, 435
XBee Series 2 configuration, 433
XBee Actuate sketch, 447
XBee modules
about, 425
activating actuators, 446—450
connecting to 802.15.4 networks, 431-437
connecting to ZigBee networks, 431-437
Remote AT Command feature, 446
sending messages to, 438—439
sending sensor data between, 440-444
troubleshooting, 431
ZigBee compatibility, 431
XBeeAnalogReceive sketch, 442
XBeeAnalogReceiveSeries1 sketch, 444
XBeeEcho sketch, 432
XBeeMessage sketch, 438
XML format, 466—468

z

Zambetti, Nicholas, 254
zero
ASCII value, 28
leading, 415
ZIGBEE COORDINATOR AT function, 434,
446
ZIGBEE ROUTER AT function, 434, 441, 446
ZigBee standard
about, 431

Index | 631

About the Author

Michael Margolis is a technologist in the field of real time computing with expertise
in developing and delivering hardware and software for interacting with the environ-
ment. He has over 30 years of experience in a wide range of relevant technologies,
working with Sony, Microsoft, Lucent/Bell Labs, and most recently as Chief Technical
Officer with Avaya.

Colophon

The animal on the cover of Arduino Cookbook is a toy rabbit. Mechanical toys like this
one move by means of springs, gears, pulleys, levers, or other simple machines, powered
by mechanical energy. Such toys have a long history, with ancient examples known
from Greece, China, and the Arab world.

Mechanical toy making flourished in early modern Europe. In the late 1400s, German
inventor Karel Grod demonstrated flying wind-up toys. Prominent scientists of the day,
including Leonardo da Vinci, Descartes, and Galileo Galilei, were noted for their work
on mechanical toys. Da Vinci’s famed mechanical lion, built in 1509 for Louis XII,
walked up to the king and tore open its chest to reveal a fleur-de-lis.

The art of mechanical toy making is considered to have reached its pinnacle in the late
eighteenth century, with the famed “automata” of the Swiss watchmaker Pierre Jaquet-
Droz and his son Henri-Louis. Their human figures performed such lifelike actions as
dipping a pen in an inkwell, writing full sentences, drawing sketches, and blowing
eraser dust from the page. In the nineteenth century, European and American compa-
nies turned out popular clockwork toys that remain collectible today.

Because these original toys, which had complicated works and elaborate decorations,
were costly and time-consuming to make, they were reserved for the amusement of
royalty or the entertainment of adults. Only since the late nineteenth century, with the
appearance of mass production and cheap materials (tin, and later, plastic), have me-
chanical toys been considered playthings for children. These inexpensive moving nov-
elties were popular for about a century, until battery-operated toys superseded them.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	What Was Left Out
	Code Style (About the Code)
	Arduino Platform Release Notes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	1.0 Introduction
	Arduino Software
	Arduino Hardware
	See Also

	1.1 Installing the Integrated Development Environment (IDE)
	Problem
	Solution
	Discussion
	See Also

	1.2 Setting Up the Arduino Board
	Problem
	Solution
	Discussion
	See Also

	1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch
	Problem
	Solution
	Discussion
	See Also

	1.4 Uploading and Running the Blink Sketch
	Problem
	Solution
	Discussion
	See Also

	1.5 Creating and Saving a Sketch
	Problem
	Solution
	Discussion

	1.6 Using Arduino
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Making the Sketch Do Your Bidding
	2.0 Introduction
	2.1 Structuring an Arduino Program
	Problem
	Solution
	Discussion
	See Also

	2.2 Using Simple Primitive Types (Variables)
	Problem
	Solution
	Discussion
	See Also

	2.3 Using Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.4 Working with Groups of Values
	Problem
	Solution
	Discussion
	See Also

	2.5 Using Arduino String Functionality
	Problem
	Solution
	Discussion
	See Also

	2.6 Using C Character Strings
	Problem
	Solution
	Discussion
	See Also

	2.7 Splitting Comma-Separated Text into Groups
	Problem
	Solution
	Discussion
	See Also

	2.8 Converting a Number to a String
	Problem
	Solution
	Discussion

	2.9 Converting a String to a Number
	Problem
	Solution
	Discussion
	See Also

	2.10 Structuring Your Code into Functional Blocks
	Problem
	Solution
	Discussion
	See Also

	2.11 Returning More Than One Value from a Function
	Problem
	Solution
	Discussion

	2.12 Taking Actions Based on Conditions
	Problem
	Solution
	Discussion
	See Also

	2.13 Repeating a Sequence of Statements
	Problem
	Solution
	Discussion
	See Also

	2.14 Repeating Statements with a Counter
	Problem
	Solution
	Discussion
	See Also

	2.15 Breaking Out of Loops
	Problem
	Solution
	Discussion
	See Also

	2.16 Taking a Variety of Actions Based on a Single Variable
	Problem
	Solution
	Discussion
	See Also

	2.17 Comparing Character and Numeric Values
	Problem
	Solution
	Discussion
	See Also

	2.18 Comparing Strings
	Problem
	Solution
	Discussion
	See Also

	2.19 Performing Logical Comparisons
	Problem
	Solution
	Discussion

	2.20 Performing Bitwise Operations
	Problem
	Solution
	Discussion
	See Also

	2.21 Combining Operations and Assignment
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Using Mathematical Operators
	3.0 Introduction
	3.1 Adding, Subtracting, Multiplying, and Dividing
	Problem
	Solution
	Discussion
	See Also

	3.2 Incrementing and Decrementing Values
	Problem
	Solution
	Discussion
	See Also

	3.3 Finding the Remainder After Dividing Two Values
	Problem
	Solution
	Discussion
	See Also

	3.4 Determining the Absolute Value
	Problem
	Solution
	Discussion
	See Also

	3.5 Constraining a Number to a Range of Values
	Problem
	Solution
	Discussion
	See Also

	3.6 Finding the Minimum or Maximum of Some Values
	Problem
	Solution
	Discussion
	See Also

	3.7 Raising a Number to a Power
	Problem
	Solution
	Discussion

	3.8 Taking the Square Root
	Problem
	Solution
	Discussion

	3.9 Rounding Floating-Point Numbers Up and Down
	Problem
	Solution
	Discussion

	3.10 Using Trigonometric Functions
	Problem
	Solution
	Discussion
	See Also

	3.11 Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	3.12 Setting and Reading Bits
	Problem
	Solution
	Discussion
	See Also

	3.13 Shifting Bits
	Problem
	Solution
	Discussion
	See Also

	3.14 Extracting High and Low Bytes in an int or long
	Problem
	Solution
	Discussion
	See Also

	3.15 Forming an int or long from High and Low Bytes
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Serial Communications
	4.0 Introduction
	Serial Hardware
	Software Serial
	Serial Message Protocol
	See Also

	4.1 Sending Debug Information from Arduino to Your Computer
	Problem
	Solution
	Discussion
	See Also

	4.2 Sending Formatted Text and Numeric Data from Arduino
	Problem
	Solution
	Discussion
	See Also

	4.3 Receiving Serial Data in Arduino
	Problem
	Solution
	Discussion
	See Also

	4.4 Sending Multiple Text Fields from Arduino in a Single Message
	Problem
	Solution
	Discussion
	See Also

	4.5 Receiving Multiple Text Fields in a Single Message in Arduino
	Problem
	Solution
	Discussion
	See Also

	4.6 Sending Binary Data from Arduino
	Problem
	Solution
	Discussion
	See Also

	4.7 Receiving Binary Data from Arduino on a Computer
	Problem
	Solution
	Discussion
	See Also

	4.8 Sending Binary Values from Processing to Arduino
	Problem
	Solution
	Discussion

	4.9 Sending the Value of Multiple Arduino Pins
	Problem
	Solution
	Discussion
	See Also

	4.10 How to Move the Mouse Cursor on a PC or Mac
	Problem
	Solution
	Discussion
	See Also

	4.11 Controlling Google Earth Using Arduino
	Problem
	Solution
	Discussion
	See Also

	4.12 Logging Arduino Data to a File on Your Computer
	Problem
	Solution
	Discussion
	See Also

	4.13 Sending Data to Two Serial Devices at the Same Time
	Problem
	Solution
	Discussion

	4.14 Receiving Serial Data from Two Devices at the Same Time
	Problem
	Solution
	Discussion
	Receiving data from multiple NewSoftSerial ports

	4.15 Setting Up Processing on Your Computer to Send and Receive Serial Data
	Problem
	Solution

	Chapter 5. Simple Digital and Analog Input
	5.0 Introduction
	5.1 Using a Switch
	Problem
	Solution
	Discussion
	See Also

	5.2 Using a Switch Without External Resistors
	Problem
	Solution
	Discussion

	5.3 Reliably Detecting the Closing of a Switch
	Problem
	Solution
	Discussion
	See Also

	5.4 Determining How Long a Switch Is Pressed
	Problem
	Solution
	Discussion

	5.5 Reading a Keypad
	Problem
	Solution
	Discussion
	See Also

	5.6 Reading Analog Values
	Problem
	Solution
	Discussion
	See Also

	5.7 Changing the Range of Values
	Problem
	Solution
	Discussion
	See Also

	5.8 Reading More Than Six Analog Inputs
	Problem
	Solution
	Discussion
	See Also

	5.9 Displaying Voltages Up to 5V
	Problem
	Solution
	Discussion

	5.10 Responding to Changes in Voltage
	Problem
	Solution
	Discussion

	5.11 Measuring Voltages More Than 5V (Voltage Dividers)
	Problem
	Solution
	Discussion

	Chapter 6. Getting Input from Sensors
	6.0 Introduction
	See Also

	6.1 Detecting Movement
	Problem
	Solution
	Discussion
	See Also

	6.2 Detecting Light
	Problem
	Solution
	Discussion

	6.3 Detecting Motion (Integrating Passive Infrared Detectors)
	Problem
	Solution
	Discussion

	6.4 Measuring Distance
	Problem
	Solution
	Discussion
	See Also

	6.5 Measuring Distance Accurately
	Problem
	Solution
	Discussion
	See Also

	6.6 Detecting Vibration
	Problem
	Solution
	Discussion

	6.7 Detecting Sound
	Problem
	Solution
	Discussion

	6.8 Measuring Temperature
	Problem
	Solution
	Discussion

	6.9 Reading RFID Tags
	Problem
	Solution
	Discussion

	6.10 Tracking the Movement of a Dial
	Problem
	Solution
	Discussion

	6.11 Tracking the Movement of More Than One Rotary Encoder
	Problem
	Solution
	Discussion

	6.12 Tracking the Movement of a Dial in a Busy Sketch
	Problem
	Solution
	Discussion

	6.13 Using a Mouse
	Problem
	Solution
	Discussion

	6.14 Getting Location from a GPS
	Problem
	Solution
	Discussion
	See Also

	6.15 Detecting Rotation Using a Gyroscope
	Problem
	Solution
	Discussion

	6.16 Detecting Direction
	Problem
	Solution
	Discussion

	6.17 Getting Input from a Game Control Pad (PlayStation)
	Problem
	Solution
	Discussion
	See Also

	6.18 Reading Acceleration
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Visual Output
	7.0 Introduction
	Digital Output
	Analog Output
	Controlling Light
	LED specifications
	Multiplexing

	7.1 Connecting and Using LEDs
	Problem
	Solution
	Discussion
	See Also

	7.2 Adjusting the Brightness of an LED
	Problem
	Solution
	Discussion
	See Also

	7.3 Driving High-Power LEDs
	Problem
	Solution
	Discussion
	See Also

	7.4 Adjusting the Color of an LED
	Problem
	Solution
	Discussion
	See Also

	7.5 Sequencing Multiple LEDs: Creating a Bar Graph
	Problem
	Solution
	Discussion
	See Also

	7.6 Sequencing Multiple LEDs: Making a Chase Sequence (Knight Rider)
	Problem
	Solution
	Discussion

	7.7 Controlling an LED Matrix Using Multiplexing
	Problem
	Solution
	Discussion

	7.8 Displaying Images on an LED Matrix
	Problem
	Solution
	Discussion
	See Also

	7.9 Controlling a Matrix of LEDs: Charlieplexing
	Problem
	Solution
	Discussion
	See Also

	7.10 Driving a 7-Segment LED Display
	Problem
	Solution
	Discussion

	7.11 Driving Multidigit, 7-Segment LED Displays: Multiplexing
	Problem
	Solution
	Discussion

	7.12 Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift Registers
	Problem
	Solution
	Solution

	7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers
	Problem
	Solution
	Discussion
	See Also

	7.14 Increasing the Number of Analog Outputs Using PWM Extender Chips (TLC5940)
	Problem
	Solution
	Discussion
	See Also

	7.15 Using an Analog Panel Meter As a Display
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Physical Output
	8.0 Introduction
	Motion Control Using Servos
	Solenoids and Relays
	Brushed and Brushless Motors
	Stepper Motors
	Troubleshooting Sidebar

	8.1 Controlling the Position of a Servo
	Problem
	Solution
	Discussion

	8.2 Controlling One or Two Servos with a Potentiometer or Sensor
	Problem
	Solution
	Discussion

	8.3 Controlling the Speed of Continuous Rotation Servos
	Problem
	Solution
	Discussion

	8.4 Controlling Servos from the Serial Port
	Problem
	Solution
	Discussion
	See Also

	8.5 Driving a Brushless Motor (Using a Hobby Speed Controller)
	Problem
	Solution
	Discussion

	8.6 Controlling Solenoids and Relays
	Problem
	Solution
	Discussion

	8.7 Making an Object Vibrate
	Problem
	Solution
	Discussion

	8.8 Driving a Brushed Motor Using a Transistor
	Problem
	Solution
	Discussion

	8.9 Controlling the Direction of a Brushed Motor with an H-Bridge
	Problem
	Solution
	Discussion

	8.10 Controlling the Direction and Speed of a Brushed Motor with an H-Bridge
	Problem
	Solution
	Discussion

	8.11 Using Sensors to Control the Direction and Speed of Brushed Motors (L293 H-Bridge)
	Problem
	Solution
	Discussion
	See Also

	8.12 Driving a Bipolar Stepper Motor
	Problem
	Solution
	Discussion

	8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board)
	Problem
	Solution
	Discussion

	8.14 Driving a Unipolar Stepper Motor (ULN2003A)
	Problem
	Solution
	Discussion

	Chapter 9. Audio Output
	9.0 Introduction
	9.1 Playing Tones
	Problem
	Solution
	See Also

	9.2 Playing a Simple Melody
	Problem
	Solution

	9.3 Generating More Than One Simultaneous Tone
	Problem
	Solution
	Discussion

	9.4 Generating Audio Tones and Fading an LED
	Problem
	Solution
	Discussion
	See Also

	9.5 Playing a WAV File
	Problem
	Solution
	Discussion
	See Also

	9.6 Controlling MIDI
	Problem
	Solution
	Discussion
	See Also

	9.7 Making an Audio Synthesizer
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Remotely Controlling External Devices
	10.0 Introduction
	10.1 Responding to an Infrared Remote Control
	Problem
	Solution
	Discussion

	10.2 Decoding Infrared Remote Control Signals
	Problem
	Solution
	Discussion
	See Also

	10.3 Imitating Remote Control Signals
	Problem
	Solution
	Discussion
	See Also

	10.4 Controlling a Digital Camera
	Problem
	Solution
	Discussion
	See Also

	10.5 Controlling AC Devices by Hacking a Remote Controlled Switch
	Problem
	Solution
	Discussion

	Chapter 11. Using Displays
	11.0 Introduction
	11.1 Connecting and Using a Text LCD Display
	Problem
	Solution
	Discussion
	See Also

	11.2 Formatting Text
	Problem
	Solution
	Discussion
	See Also

	11.3 Turning the Cursor and Display On or Off
	Problem
	Solution
	Discussion

	11.4 Scrolling Text
	Problem
	Solution
	Discussion

	11.5 Displaying Special Symbols
	Problem
	Solution
	Discussion
	See Also

	11.6 Creating Custom Characters
	Problem
	Solution
	Discussion

	11.7 Displaying Symbols Larger Than a Single Character
	Problem
	Solution
	Discussion
	See Also

	11.8 Displaying Pixels Smaller Than a Single Character
	Problem
	Solution
	Discussion

	11.9 Connecting and Using a Graphical LCD Display
	Problem
	Solution
	Discussion

	11.10 Creating Bitmaps for Use with a Graphical Display
	Problem
	Solution
	See Also

	11.11 Displaying Text on a TV
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Using Time and Dates
	12.0 Introduction
	12.1 Creating Delays
	Problem
	Solution
	Discussion
	See Also

	12.2 Using millis to Determine Duration
	Problem
	Solution
	Discussion
	See Also

	12.3 More Precisely Measuring the Duration of a Pulse
	Problem
	Solution
	Discussion
	See Also

	12.4 Using Arduino As a Clock
	Problem
	Solution
	Discussion
	See Also

	12.5 Creating an Alarm to Periodically Call a Function
	Problem
	Solution
	Discussion

	12.6 Using a Real-Time Clock
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Communicating Using I2C and SPI
	13.0 Introduction
	I2C
	SPI
	See Also

	13.1 Controlling an RGB LED Using the BlinkM Module
	Problem
	Solution
	Discussion
	See Also

	13.2 Using the Wii Nunchuck Accelerometer
	Problem
	Solution
	Discussion

	13.3 Interfacing to an External Real-Time Clock
	Problem
	Solution
	Discussion
	See Also

	13.4 Adding External EEPROM Memory
	Problem
	Solution
	Discussion
	See Also

	13.5 Reading Temperature with a Digital Thermometer
	Problem
	Solution
	Discussion
	See Also

	13.6 Driving Four 7-Segment LEDs Using Only Two Wires
	Problem
	Solution
	Discussion
	See Also

	13.7 Integrating an I2C Port Expander
	Problem
	Solution
	Discussion
	See Also

	13.8 Driving Multidigit, 7-Segment Displays Using SPI
	Problem
	Solution
	Discussion

	13.9 Communicating Between Two or More Arduino Boards
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Wireless Communication
	14.0 Introduction
	14.1 Sending Messages Using Low-Cost Wireless Modules
	Problem
	Solution
	Discussion
	See Also

	14.2 Connecting Arduino to a ZigBee or 802.15.4 Network
	Problem
	Solution
	Discussion
	Series 2 configuration
	Series 1 configuration
	Talking to the Arduino

	See Also

	14.3 Sending a Message to a Particular XBee
	Problem
	Solution
	Discussion
	See Also

	14.4 Sending Sensor Data Between XBees
	Problem
	Solution
	Discussion
	Series 2 XBees
	Series 1 XBees

	See Also

	14.5 Activating an Actuator Connected to an XBee
	Problem
	Solution
	Discussion
	Series 2 XBees
	Series 1 XBees

	See Also

	Chapter 15. Ethernet and Networking
	15.0 Introduction
	15.1 Setting Up the Ethernet Shield
	Problem
	Solution
	Discussion
	See Also

	15.2 Obtaining Your IP Address Automatically
	Problem
	Solution
	Discussion

	15.3 Resolving Hostnames to IP Addresses (DNS)
	Problem
	Solution
	Discussion

	15.4 Requesting Data from a Web Server
	Problem
	Solution
	Discussion

	15.5 Requesting Data from a Web Server Using XML
	Problem
	Solution

	15.6 Setting Up an Arduino to Be a Web Server
	Problem
	Solution
	Discussion

	15.7 Handling Incoming Web Requests
	Problem
	Solution
	Discussion

	15.8 Handling Incoming Requests for Specific Pages
	Problem
	Solution
	Discussion

	15.9 Using HTML to Format Web Server Responses
	Problem
	Solution
	Discussion
	See Also

	15.10 Serving Web Pages Using Forms (POST)
	Problem
	Solution
	Discussion

	15.11 Serving Web Pages Containing Large Amounts of Data
	Problem
	Solution
	Discussion
	See Also

	15.12 Sending Twitter Messages
	Problem
	Solution
	Discussion

	15.13 Sending and Receiving Simple Messages (UDP)
	Problem
	Solution
	Discussion

	15.14 Getting the Time from an Internet Time Server
	Problem
	Solution
	Discussion
	See Also

	15.15 Monitoring Pachube Feeds
	Problem
	Solution
	Discussion

	15.16 Sending Information to Pachube
	Problem
	Solution
	Discussion

	Chapter 16. Using, Modifying, and Creating
 Libraries
	16.0 Introduction
	16.1 Using the Built-in Libraries
	Problem
	Solution
	Discussion
	See Also

	16.2 Installing Third-Party Libraries
	Problem
	Solution
	Discussion

	16.3 Modifying a Library
	Problem
	Solution
	Discussion
	See Also

	16.4 Creating Your Own Library
	Problem
	Solution
	Discussion
	See Also

	16.5 Creating a Library That Uses Other Libraries
	Problem
	Solution
	Discussion

	Chapter 17. Advanced Coding and Memory
 Handling
	17.0 Introduction
	Preprocessor
	See Also

	17.1 Understanding the Arduino Build Process
	Problem
	Solution
	Discussion
	See Also

	17.2 Determining the Amount of Free and Used RAM
	Problem
	Solution
	Discussion
	See Also

	17.3 Storing and Retrieving Numeric Values in Program Memory
	Problem
	Solution
	Discussion

	17.4 Storing and Retrieving Strings in Program Memory
	Problem
	Solution
	Discussion

	17.5 Using #define and const Instead of Integers
	Problem
	Solution
	Discussion
	See Also

	17.6 Using Conditional Compilations
	Problem
	Solution
	Discussion
	See Also

	Chapter 18. Using the Controller Chip Hardware
	18.0 Introduction
	Registers
	Interrupts
	Timers
	Analog and Digital Pins
	See Also

	18.1 Storing Data in Permanent EEPROM Memory
	Problem
	Solution
	Discussion
	See Also

	18.2 Using Hardware Interrupts
	Problem
	Solution
	Discussion
	See Also

	18.3 Setting Timer Duration
	Problem
	Solution
	Discussion
	See Also

	18.4 Setting Timer Pulse Width and Duration
	Problem
	Solution
	Discussion

	18.5 Creating a Pulse Generator
	Problem
	Solution
	Discussion
	See Also

	18.6 Changing a Timer’s PWM Frequency
	Problem
	Solution
	Discussion

	18.7 Counting Pulses
	Problem
	Solution
	Discussion
	See Also

	18.8 Measuring Pulses More Accurately
	Problem
	Solution
	Discussion

	18.9 Measuring Analog Values Quickly
	Problem
	Solution
	Discussion
	See Also

	18.10 Reducing Battery Drain
	Problem
	Solution
	Discussion
	See Also

	18.11 Setting Digital Pins Quickly
	Problem
	Solution
	Discussion

	Appendix A. Electronic Components
	Capacitor
	Diode
	Integrated Circuit
	Keypad
	LED
	Motor (DC)
	Optocoupler
	Photocell (Photoresistor)
	Piezo
	Pot (Potentiometer)
	Relay
	Resistor
	Solenoid
	Speaker
	Stepper Motor
	Switch
	Transistor
	See Also

	Appendix B. Using Schematic Diagrams and Data
 Sheets
	How to Read a Data Sheet
	Choosing and Using Transistors for Switching

	Appendix C. Building and Connecting the Circuit
	Using a Breadboard
	Connecting and Using External Power Supplies and Batteries
	Using Capacitors for Decoupling
	Using Snubber Diodes with Inductive Loads
	Working with AC Line Voltages

	Appendix D. Tips on Troubleshooting Software
 Problems
	Code That Won’t Compile
	Code That Compiles but Does Not Work As Expected
	Troubleshooting Interrelated Hardware/Software Problems

	Appendix E. Tips on Troubleshooting Hardware
 Problems
	Still Stuck?

	Appendix F. Digital and Analog Pins
	Appendix G. ASCII and Extended Character Sets
	Index

